mudaza commited on
Commit
1060e26
·
1 Parent(s): ade21fe

update code

Browse files
Files changed (1) hide show
  1. app.py +16 -16
app.py CHANGED
@@ -29,21 +29,21 @@ class Disease(BaseModel):
29
  def greet_json():
30
  return {"Hello": "World!"}
31
 
32
- @app.post("/")
33
- async def greet_post():
34
- return {"Hello": "Post World!"}
35
-
36
- # @app.post("/", response_model=list[Disease])
37
- # async def predict(query: str):
38
- # query_embedding = model.encode(query).astype('float')
39
- # similarity_vectors = model.similarity(q, all_embeddings)
40
- # scores, indicies = torch.topk(similarity_vectors, k=len(all_embeddings))
41
- # id_ = df.iloc[indicies]
42
- # id_ = df.drop_duplicates("label")
43
- # scores = scores[id_.index]
44
- # diseases = label_encoder.inverse_transform(id_.label.values)
45
- # id_ = id_.label.values
46
- # diseases = [dict("id": value[0], "name": value[1], "score" : value[2]) for value in zip(id_, diseases, scores)]
47
- # return diseases
48
 
49
 
 
29
  def greet_json():
30
  return {"Hello": "World!"}
31
 
32
+ # @app.post("/")
33
+ # async def greet_post():
34
+ # return {"Hello": "Post World!"}
35
+
36
+ @app.post("/", response_model=list[Disease])
37
+ async def predict(query: str):
38
+ query_embedding = model.encode(query).astype('float')
39
+ similarity_vectors = model.similarity(q, all_embeddings)
40
+ scores, indicies = torch.topk(similarity_vectors, k=len(all_embeddings))
41
+ id_ = df.iloc[indicies]
42
+ id_ = df.drop_duplicates("label")
43
+ scores = scores[id_.index]
44
+ diseases = label_encoder.inverse_transform(id_.label.values)
45
+ id_ = id_.label.values
46
+ diseases = [dict({"id": value[0], "name": value[1], "score" : value[2]}) for value in zip(id_, diseases, scores)]
47
+ return diseases
48
 
49