modified code and add files
Browse files
app.py
CHANGED
@@ -41,9 +41,9 @@ async def predict(symptoms: Symptoms):
|
|
41 |
similarity_vectors = model.similarity(query_embedding, corpus)[0]
|
42 |
scores, indicies = torch.topk(similarity_vectors, k=len(corpus))
|
43 |
# id_ = df.iloc[indicies].reset_index(drop=True)
|
44 |
-
|
45 |
# id_ = id_.drop_duplicates("label")
|
46 |
-
|
47 |
# scores = scores[id_.index]
|
48 |
# diseases = label_encoder.inverse_transform(id_.label.values)
|
49 |
# id_ = id_.label.values
|
@@ -51,5 +51,5 @@ async def predict(symptoms: Symptoms):
|
|
51 |
"name": value[1],
|
52 |
"url" : value[2],
|
53 |
"score" : value[3]})
|
54 |
-
for value in zip(df.index,
|
55 |
return diseases
|
|
|
41 |
similarity_vectors = model.similarity(query_embedding, corpus)[0]
|
42 |
scores, indicies = torch.topk(similarity_vectors, k=len(corpus))
|
43 |
# id_ = df.iloc[indicies].reset_index(drop=True)
|
44 |
+
ls = df.iloc[indicies].copy()
|
45 |
# id_ = id_.drop_duplicates("label")
|
46 |
+
ls["scores"] = scores
|
47 |
# scores = scores[id_.index]
|
48 |
# diseases = label_encoder.inverse_transform(id_.label.values)
|
49 |
# id_ = id_.label.values
|
|
|
51 |
"name": value[1],
|
52 |
"url" : value[2],
|
53 |
"score" : value[3]})
|
54 |
+
for value in zip(df.index, ls["name"], ls["url"], ls["scores"])]
|
55 |
return diseases
|