|
import numpy as np |
|
import trimesh |
|
import torch |
|
import os.path as osp |
|
import lib.smplx as smplx |
|
from pytorch3d.ops import SubdivideMeshes |
|
from pytorch3d.structures import Meshes |
|
|
|
from lib.smplx.lbs import general_lbs |
|
from lib.dataset.mesh_util import keep_largest, poisson |
|
from scipy.spatial import cKDTree |
|
from lib.dataset.mesh_util import SMPLX |
|
from lib.common.local_affine import register |
|
|
|
smplx_container = SMPLX() |
|
device = torch.device("cuda:0") |
|
|
|
prefix = "./results/github/econ/obj/304e9c4798a8c3967de7c74c24ef2e38" |
|
smpl_path = f"{prefix}_smpl_00.npy" |
|
econ_path = f"{prefix}_0_full.obj" |
|
|
|
smplx_param = np.load(smpl_path, allow_pickle=True).item() |
|
econ_obj = trimesh.load(econ_path) |
|
econ_obj.vertices *= np.array([1.0, -1.0, -1.0]) |
|
econ_obj.vertices /= smplx_param["scale"].cpu().numpy() |
|
econ_obj.vertices -= smplx_param["transl"].cpu().numpy() |
|
|
|
for key in smplx_param.keys(): |
|
smplx_param[key] = smplx_param[key].cpu().view(1, -1) |
|
|
|
|
|
smpl_model = smplx.create( |
|
smplx_container.model_dir, |
|
model_type="smplx", |
|
gender="neutral", |
|
age="adult", |
|
use_face_contour=False, |
|
use_pca=False, |
|
num_betas=200, |
|
num_expression_coeffs=50, |
|
ext='pkl') |
|
|
|
smpl_out = smpl_model( |
|
body_pose=smplx_param["body_pose"], |
|
global_orient=smplx_param["global_orient"], |
|
betas=smplx_param["betas"], |
|
expression=smplx_param["expression"], |
|
jaw_pose=smplx_param["jaw_pose"], |
|
left_hand_pose=smplx_param["left_hand_pose"], |
|
right_hand_pose=smplx_param["right_hand_pose"], |
|
return_verts=True, |
|
return_full_pose=True, |
|
return_joint_transformation=True, |
|
return_vertex_transformation=True) |
|
|
|
smpl_verts = smpl_out.vertices.detach()[0] |
|
smpl_tree = cKDTree(smpl_verts.cpu().numpy()) |
|
dist, idx = smpl_tree.query(econ_obj.vertices, k=5) |
|
|
|
if not osp.exists(f"{prefix}_econ_cano.obj") or not osp.exists(f"{prefix}_smpl_cano.obj"): |
|
|
|
|
|
econ_verts = torch.tensor(econ_obj.vertices).float() |
|
inv_mat = torch.inverse(smpl_out.vertex_transformation.detach()[0][idx[:, 0]]) |
|
homo_coord = torch.ones_like(econ_verts)[..., :1] |
|
econ_cano_verts = inv_mat @ torch.cat([econ_verts, homo_coord], dim=1).unsqueeze(-1) |
|
econ_cano_verts = econ_cano_verts[:, :3, 0].cpu() |
|
econ_cano = trimesh.Trimesh(econ_cano_verts, econ_obj.faces) |
|
|
|
|
|
inv_mat = torch.inverse(smpl_out.vertex_transformation.detach()[0]) |
|
homo_coord = torch.ones_like(smpl_verts)[..., :1] |
|
smpl_cano_verts = inv_mat @ torch.cat([smpl_verts, homo_coord], dim=1).unsqueeze(-1) |
|
smpl_cano_verts = smpl_cano_verts[:, :3, 0].cpu() |
|
smpl_cano = trimesh.Trimesh(smpl_cano_verts, smpl_model.faces, maintain_orders=True, process=False) |
|
smpl_cano.export(f"{prefix}_smpl_cano.obj") |
|
|
|
|
|
econ_cano_body = econ_cano.copy() |
|
mano_mask = ~np.isin(idx[:, 0], smplx_container.smplx_mano_vid) |
|
econ_cano_body.update_faces(mano_mask[econ_cano.faces].all(axis=1)) |
|
econ_cano_body.remove_unreferenced_vertices() |
|
econ_cano_body = keep_largest(econ_cano_body) |
|
|
|
|
|
register_mask = ~np.isin( |
|
np.arange(smpl_cano_verts.shape[0]), |
|
np.concatenate([smplx_container.smplx_mano_vid, smplx_container.smplx_front_flame_vid])) |
|
register_mask *= ~smplx_container.eyeball_vertex_mask.bool().numpy() |
|
smpl_cano_body = smpl_cano.copy() |
|
smpl_cano_body.update_faces(register_mask[smpl_cano.faces].all(axis=1)) |
|
smpl_cano_body.remove_unreferenced_vertices() |
|
smpl_cano_body = keep_largest(smpl_cano_body) |
|
|
|
|
|
smpl_cano_body = Meshes( |
|
verts=[torch.tensor(smpl_cano_body.vertices).float()], |
|
faces=[torch.tensor(smpl_cano_body.faces).long()], |
|
).to(device) |
|
sm = SubdivideMeshes(smpl_cano_body) |
|
smpl_cano_body = register(econ_cano_body, sm(smpl_cano_body), device) |
|
|
|
|
|
econ_cano_body = econ_cano.copy() |
|
edge_before = np.sqrt( |
|
((econ_obj.vertices[econ_cano.edges[:, 0]] - econ_obj.vertices[econ_cano.edges[:, 1]])**2).sum(axis=1)) |
|
edge_after = np.sqrt( |
|
((econ_cano.vertices[econ_cano.edges[:, 0]] - econ_cano.vertices[econ_cano.edges[:, 1]])**2).sum(axis=1)) |
|
edge_diff = edge_after / edge_before.clip(1e-2) |
|
streched_mask = np.unique(econ_cano.edges[edge_diff > 6]) |
|
mano_mask = ~np.isin(idx[:, 0], smplx_container.smplx_mano_vid) |
|
mano_mask[streched_mask] = False |
|
econ_cano_body.update_faces(mano_mask[econ_cano.faces].all(axis=1)) |
|
econ_cano_body.remove_unreferenced_vertices() |
|
|
|
|
|
econ_cano_tree = cKDTree(econ_cano.vertices) |
|
dist, idx = econ_cano_tree.query(smpl_cano_body.vertices, k=1) |
|
smpl_cano_body.update_faces((dist > 0.02)[smpl_cano_body.faces].all(axis=1)) |
|
smpl_cano_body.remove_unreferenced_vertices() |
|
|
|
smpl_hand = smpl_cano.copy() |
|
smpl_hand.update_faces(smplx_container.mano_vertex_mask.numpy()[smpl_hand.faces].all(axis=1)) |
|
smpl_hand.remove_unreferenced_vertices() |
|
econ_cano = sum([smpl_hand, smpl_cano_body, econ_cano_body]) |
|
econ_cano = poisson(econ_cano, f"{prefix}_econ_cano.obj") |
|
else: |
|
econ_cano = trimesh.load(f"{prefix}_econ_cano.obj") |
|
smpl_cano = trimesh.load(f"{prefix}_smpl_cano.obj", maintain_orders=True, process=False) |
|
|
|
smpl_tree = cKDTree(smpl_cano.vertices) |
|
dist, idx = smpl_tree.query(econ_cano.vertices, k=2) |
|
knn_weights = np.exp(-dist**2) |
|
knn_weights /= knn_weights.sum(axis=1, keepdims=True) |
|
econ_J_regressor = (smpl_model.J_regressor[:, idx] * knn_weights[None]).sum(axis=-1) |
|
econ_lbs_weights = (smpl_model.lbs_weights.T[:, idx] * knn_weights[None]).sum(axis=-1).T |
|
econ_J_regressor /= econ_J_regressor.sum(axis=1, keepdims=True) |
|
econ_lbs_weights /= econ_lbs_weights.sum(axis=1, keepdims=True) |
|
|
|
posed_econ_verts, _ = general_lbs( |
|
pose=smpl_out.full_pose, |
|
v_template=torch.tensor(econ_cano.vertices).unsqueeze(0), |
|
J_regressor=econ_J_regressor, |
|
parents=smpl_model.parents, |
|
lbs_weights=econ_lbs_weights) |
|
|
|
econ_pose = trimesh.Trimesh(posed_econ_verts[0].detach(), econ_cano.faces) |
|
econ_pose.export(f"{prefix}_econ_pose.obj") |