|
import torch.nn as nn
|
|
|
|
from .net_utils import (
|
|
PosEnSine,
|
|
double_conv,
|
|
double_conv_down,
|
|
double_conv_up,
|
|
single_conv,
|
|
)
|
|
from .transformer_basics import OurMultiheadAttention
|
|
|
|
|
|
class TransformerDecoderUnit(nn.Module):
|
|
def __init__(self, feat_dim, n_head=8, pos_en_flag=True, attn_type='softmax', P=None):
|
|
super(TransformerDecoderUnit, self).__init__()
|
|
self.feat_dim = feat_dim
|
|
self.attn_type = attn_type
|
|
self.pos_en_flag = pos_en_flag
|
|
self.P = P
|
|
|
|
self.pos_en = PosEnSine(self.feat_dim // 2)
|
|
self.attn = OurMultiheadAttention(feat_dim, n_head)
|
|
|
|
self.linear1 = nn.Conv2d(self.feat_dim, self.feat_dim, 1)
|
|
self.linear2 = nn.Conv2d(self.feat_dim, self.feat_dim, 1)
|
|
self.activation = nn.ReLU(inplace=True)
|
|
|
|
self.norm = nn.BatchNorm2d(self.feat_dim)
|
|
|
|
def forward(self, q, k, v):
|
|
if self.pos_en_flag:
|
|
q_pos_embed = self.pos_en(q)
|
|
k_pos_embed = self.pos_en(k)
|
|
else:
|
|
q_pos_embed = 0
|
|
k_pos_embed = 0
|
|
|
|
|
|
out = self.attn(
|
|
q=q + q_pos_embed, k=k + k_pos_embed, v=v, attn_type=self.attn_type, P=self.P
|
|
)[0]
|
|
|
|
|
|
out2 = self.linear2(self.activation(self.linear1(out)))
|
|
out = out + out2
|
|
out = self.norm(out)
|
|
|
|
return out
|
|
|
|
|
|
class Unet(nn.Module):
|
|
def __init__(self, in_ch, feat_ch, out_ch):
|
|
super().__init__()
|
|
self.conv_in = single_conv(in_ch, feat_ch)
|
|
|
|
self.conv1 = double_conv_down(feat_ch, feat_ch)
|
|
self.conv2 = double_conv_down(feat_ch, feat_ch)
|
|
self.conv3 = double_conv(feat_ch, feat_ch)
|
|
self.conv4 = double_conv_up(feat_ch, feat_ch)
|
|
self.conv5 = double_conv_up(feat_ch, feat_ch)
|
|
self.conv6 = double_conv(feat_ch, out_ch)
|
|
|
|
def forward(self, x):
|
|
feat0 = self.conv_in(x)
|
|
feat1 = self.conv1(feat0)
|
|
feat2 = self.conv2(feat1)
|
|
feat3 = self.conv3(feat2)
|
|
feat3 = feat3 + feat2
|
|
feat4 = self.conv4(feat3)
|
|
feat4 = feat4 + feat1
|
|
feat5 = self.conv5(feat4)
|
|
feat5 = feat5 + feat0
|
|
feat6 = self.conv6(feat5)
|
|
|
|
return feat0, feat1, feat2, feat3, feat4, feat6
|
|
|
|
|
|
class Texformer(nn.Module):
|
|
def __init__(self, opts):
|
|
super().__init__()
|
|
self.feat_dim = opts.feat_dim
|
|
src_ch = opts.src_ch
|
|
tgt_ch = opts.tgt_ch
|
|
out_ch = opts.out_ch
|
|
self.mask_fusion = opts.mask_fusion
|
|
|
|
if not self.mask_fusion:
|
|
v_ch = out_ch
|
|
else:
|
|
v_ch = 2 + 3
|
|
|
|
self.unet_q = Unet(tgt_ch, self.feat_dim, self.feat_dim)
|
|
self.unet_k = Unet(src_ch, self.feat_dim, self.feat_dim)
|
|
self.unet_v = Unet(v_ch, self.feat_dim, self.feat_dim)
|
|
|
|
self.trans_dec = nn.ModuleList([
|
|
None, None, None,
|
|
TransformerDecoderUnit(self.feat_dim, opts.nhead, True, 'softmax'),
|
|
TransformerDecoderUnit(self.feat_dim, opts.nhead, True, 'dotproduct'),
|
|
TransformerDecoderUnit(self.feat_dim, opts.nhead, True, 'dotproduct')
|
|
])
|
|
|
|
self.conv0 = double_conv(self.feat_dim, self.feat_dim)
|
|
self.conv1 = double_conv_down(self.feat_dim, self.feat_dim)
|
|
self.conv2 = double_conv_down(self.feat_dim, self.feat_dim)
|
|
self.conv3 = double_conv(self.feat_dim, self.feat_dim)
|
|
self.conv4 = double_conv_up(self.feat_dim, self.feat_dim)
|
|
self.conv5 = double_conv_up(self.feat_dim, self.feat_dim)
|
|
|
|
if not self.mask_fusion:
|
|
self.conv6 = nn.Sequential(
|
|
single_conv(self.feat_dim, self.feat_dim),
|
|
nn.Conv2d(self.feat_dim, out_ch, 3, 1, 1)
|
|
)
|
|
else:
|
|
self.conv6 = nn.Sequential(
|
|
single_conv(self.feat_dim, self.feat_dim),
|
|
nn.Conv2d(self.feat_dim, 2 + 3 + 1, 3, 1, 1)
|
|
)
|
|
self.sigmoid = nn.Sigmoid()
|
|
|
|
self.tanh = nn.Tanh()
|
|
|
|
def forward(self, q, k, v):
|
|
print('qkv', q.shape, k.shape, v.shape)
|
|
q_feat = self.unet_q(q)
|
|
k_feat = self.unet_k(k)
|
|
v_feat = self.unet_v(v)
|
|
|
|
print('q_feat', len(q_feat))
|
|
outputs = []
|
|
for i in range(3, len(q_feat)):
|
|
print(i, q_feat[i].shape, k_feat[i].shape, v_feat[i].shape)
|
|
outputs.append(self.trans_dec[i](q_feat[i], k_feat[i], v_feat[i]))
|
|
print('outputs', outputs[-1].shape)
|
|
|
|
f0 = self.conv0(outputs[2])
|
|
f1 = self.conv1(f0)
|
|
f1 = f1 + outputs[1]
|
|
f2 = self.conv2(f1)
|
|
f2 = f2 + outputs[0]
|
|
f3 = self.conv3(f2)
|
|
f3 = f3 + outputs[0] + f2
|
|
f4 = self.conv4(f3)
|
|
f4 = f4 + outputs[1] + f1
|
|
f5 = self.conv5(f4)
|
|
f5 = f5 + outputs[2] + f0
|
|
if not self.mask_fusion:
|
|
out = self.tanh(self.conv6(f5))
|
|
else:
|
|
out_ = self.conv6(f5)
|
|
out = [self.tanh(out_[:, :2]), self.tanh(out_[:, 2:5]), self.sigmoid(out_[:, 5:])]
|
|
return out
|
|
|