|
import cv2 |
|
import mediapipe as mp |
|
import torch |
|
import numpy as np |
|
import torch.nn.functional as F |
|
from rembg import remove |
|
from rembg.session_factory import new_session |
|
from PIL import Image |
|
from torchvision.models import detection |
|
|
|
from lib.pymafx.core import constants |
|
from lib.common.cloth_extraction import load_segmentation |
|
from torchvision import transforms |
|
|
|
|
|
def transform_to_tensor(res, mean=None, std=None, is_tensor=False): |
|
all_ops = [] |
|
if res is not None: |
|
all_ops.append(transforms.Resize(size=res)) |
|
if not is_tensor: |
|
all_ops.append(transforms.ToTensor()) |
|
if mean is not None and std is not None: |
|
all_ops.append(transforms.Normalize(mean=mean, std=std)) |
|
return transforms.Compose(all_ops) |
|
|
|
|
|
def aug_matrix(w1, h1, w2, h2): |
|
dx = (w2 - w1) / 2.0 |
|
dy = (h2 - h1) / 2.0 |
|
|
|
matrix_trans = np.array([[1.0, 0, dx], [0, 1.0, dy], [0, 0, 1.0]]) |
|
|
|
scale = np.min([float(w2) / w1, float(h2) / h1]) |
|
|
|
M = get_affine_matrix(center=(w2 / 2.0, h2 / 2.0), translate=(0, 0), scale=scale) |
|
|
|
M = np.array(M + [0.0, 0.0, 1.0]).reshape(3, 3) |
|
M = M.dot(matrix_trans) |
|
|
|
return M |
|
|
|
|
|
def get_affine_matrix(center, translate, scale): |
|
cx, cy = center |
|
tx, ty = translate |
|
|
|
M = [1, 0, 0, 0, 1, 0] |
|
M = [x * scale for x in M] |
|
|
|
|
|
M[2] += M[0] * (-cx) + M[1] * (-cy) |
|
M[5] += M[3] * (-cx) + M[4] * (-cy) |
|
|
|
|
|
M[2] += cx + tx |
|
M[5] += cy + ty |
|
return M |
|
|
|
|
|
def load_img(img_file): |
|
|
|
img = cv2.imread(img_file, cv2.IMREAD_UNCHANGED) |
|
if len(img.shape) == 2: |
|
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) |
|
|
|
if not img_file.endswith("png"): |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
else: |
|
img = cv2.cvtColor(img, cv2.COLOR_RGBA2BGR) |
|
|
|
return img |
|
|
|
|
|
def get_keypoints(image): |
|
|
|
def collect_xyv(x, body=True): |
|
lmk = x.landmark |
|
all_lmks = [] |
|
for i in range(len(lmk)): |
|
visibility = lmk[i].visibility if body else 1.0 |
|
all_lmks.append(torch.Tensor([lmk[i].x, lmk[i].y, lmk[i].z, visibility])) |
|
return torch.stack(all_lmks).view(-1, 4) |
|
|
|
mp_holistic = mp.solutions.holistic |
|
|
|
with mp_holistic.Holistic( |
|
static_image_mode=True, |
|
model_complexity=2, |
|
) as holistic: |
|
results = holistic.process(image) |
|
|
|
fake_kps = torch.zeros(33, 4) |
|
|
|
result = {} |
|
result["body"] = collect_xyv(results.pose_landmarks) if results.pose_landmarks else fake_kps |
|
result["lhand"] = collect_xyv(results.left_hand_landmarks, False) if results.left_hand_landmarks else fake_kps |
|
result["rhand"] = collect_xyv(results.right_hand_landmarks, False) if results.right_hand_landmarks else fake_kps |
|
result["face"] = collect_xyv(results.face_landmarks, False) if results.face_landmarks else fake_kps |
|
|
|
return result |
|
|
|
|
|
def get_pymafx(image, landmarks): |
|
|
|
|
|
|
|
item = {'img_body': F.interpolate(image.unsqueeze(0), size=224, mode='bicubic', align_corners=True)[0]} |
|
|
|
for part in ['lhand', 'rhand', 'face']: |
|
kp2d = landmarks[part] |
|
kp2d_valid = kp2d[kp2d[:, 3] > 0.] |
|
if len(kp2d_valid) > 0: |
|
bbox = [min(kp2d_valid[:, 0]), min(kp2d_valid[:, 1]), max(kp2d_valid[:, 0]), max(kp2d_valid[:, 1])] |
|
center_part = [(bbox[2] + bbox[0]) / 2., (bbox[3] + bbox[1]) / 2.] |
|
scale_part = 2. * max(bbox[2] - bbox[0], bbox[3] - bbox[1]) / 2 |
|
|
|
|
|
if len(kp2d_valid) < 1 or scale_part < 0.01: |
|
center_part = [0, 0] |
|
scale_part = 0.5 |
|
kp2d[:, 3] = 0 |
|
|
|
center_part = torch.tensor(center_part).float() |
|
|
|
theta_part = torch.zeros(1, 2, 3) |
|
theta_part[:, 0, 0] = scale_part |
|
theta_part[:, 1, 1] = scale_part |
|
theta_part[:, :, -1] = center_part |
|
|
|
grid = F.affine_grid(theta_part, torch.Size([1, 3, 224, 224]), align_corners=False) |
|
img_part = F.grid_sample(image.unsqueeze(0), grid, align_corners=False).squeeze(0).float() |
|
|
|
item[f'img_{part}'] = img_part |
|
|
|
theta_i_inv = torch.zeros_like(theta_part) |
|
theta_i_inv[:, 0, 0] = 1. / theta_part[:, 0, 0] |
|
theta_i_inv[:, 1, 1] = 1. / theta_part[:, 1, 1] |
|
theta_i_inv[:, :, -1] = -theta_part[:, :, -1] / theta_part[:, 0, 0].unsqueeze(-1) |
|
item[f'{part}_theta_inv'] = theta_i_inv[0] |
|
|
|
return item |
|
|
|
|
|
def expand_bbox(bbox, width, height, ratio=0.1): |
|
|
|
bbox = np.around(bbox).astype(np.int16) |
|
bbox_width = bbox[2] - bbox[0] |
|
bbox_height = bbox[3] - bbox[1] |
|
|
|
bbox[1] = max(bbox[1] - bbox_height * ratio, 0) |
|
bbox[3] = min(bbox[3] + bbox_height * ratio, height) |
|
bbox[0] = max(bbox[0] - bbox_width * ratio, 0) |
|
bbox[2] = min(bbox[2] + bbox_width * ratio, width) |
|
|
|
return bbox |
|
|
|
|
|
def remove_floats(mask): |
|
|
|
|
|
|
|
|
|
|
|
new_mask = np.zeros(mask.shape) |
|
cnts, hier = cv2.findContours(mask.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) |
|
cnt_index = sorted(range(len(cnts)), key=lambda k: cv2.contourArea(cnts[k]), reverse=True) |
|
body_cnt = cnts[cnt_index[0]] |
|
childs_cnt_idx = np.where(np.array(hier)[0, :, -1] == cnt_index[0])[0] |
|
childs_cnt = [cnts[idx] for idx in childs_cnt_idx] |
|
cv2.fillPoly(new_mask, [body_cnt], 1) |
|
cv2.fillPoly(new_mask, childs_cnt, 0) |
|
|
|
return new_mask |
|
|
|
|
|
def process_image(img_file, hps_type, single, input_res=512): |
|
|
|
img_raw = load_img(img_file) |
|
|
|
in_height, in_width = img_raw.shape[:2] |
|
M = aug_matrix(in_width, in_height, input_res * 2, input_res * 2) |
|
|
|
|
|
img_square = cv2.warpAffine(img_raw, M[0:2, :], (input_res * 2, input_res * 2), flags=cv2.INTER_CUBIC) |
|
|
|
|
|
detector = detection.maskrcnn_resnet50_fpn(weights=detection.MaskRCNN_ResNet50_FPN_V2_Weights) |
|
detector.eval() |
|
predictions = detector([torch.from_numpy(img_square).permute(2, 0, 1) / 255.])[0] |
|
|
|
if single: |
|
top_score = predictions["scores"][predictions["labels"] == 1].max() |
|
human_ids = torch.where(predictions["scores"] == top_score)[0] |
|
else: |
|
human_ids = torch.logical_and(predictions["labels"] == 1, predictions["scores"] > 0.9).nonzero().squeeze(1) |
|
|
|
boxes = predictions["boxes"][human_ids, :].detach().cpu().numpy() |
|
masks = predictions["masks"][human_ids, :, :].permute(0, 2, 3, 1).detach().cpu().numpy() |
|
|
|
width = boxes[:, 2] - boxes[:, 0] |
|
height = boxes[:, 3] - boxes[:, 1] |
|
center = np.array([(boxes[:, 0] + boxes[:, 2]) / 2.0, (boxes[:, 1] + boxes[:, 3]) / 2.0]).T |
|
scale = np.array([width, height]).max(axis=0) / 90. |
|
|
|
img_icon_lst = [] |
|
img_crop_lst = [] |
|
img_hps_lst = [] |
|
img_mask_lst = [] |
|
uncrop_param_lst = [] |
|
landmark_lst = [] |
|
hands_visibility_lst = [] |
|
img_pymafx_lst = [] |
|
|
|
uncrop_param = { |
|
"center": center, |
|
"scale": scale, |
|
"ori_shape": [in_height, in_width], |
|
"box_shape": [input_res, input_res], |
|
"crop_shape": [input_res * 2, input_res * 2, 3], |
|
"M": M, |
|
} |
|
|
|
for idx in range(len(boxes)): |
|
|
|
|
|
if len(masks) > 1: |
|
mask_detection = (masks[np.arange(len(masks)) != idx]).max(axis=0) |
|
else: |
|
mask_detection = masks[0] * 0. |
|
|
|
img_crop, _ = crop( |
|
np.concatenate([img_square, (mask_detection < 0.4) * 255], axis=2), center[idx], scale[idx], [input_res, input_res]) |
|
|
|
|
|
img_rembg = remove(img_crop, post_process_mask=True, session=new_session("u2net")) |
|
img_mask = remove_floats(img_rembg[:, :, [3]]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mean_icon = std_icon = (0.5, 0.5, 0.5) |
|
img_np = (img_rembg[..., :3] * img_mask).astype(np.uint8) |
|
img_icon = transform_to_tensor(512, mean_icon, std_icon)(Image.fromarray(img_np)) * torch.tensor(img_mask).permute( |
|
2, 0, 1) |
|
img_hps = transform_to_tensor(224, constants.IMG_NORM_MEAN, constants.IMG_NORM_STD)(Image.fromarray(img_np)) |
|
|
|
landmarks = get_keypoints(img_np) |
|
|
|
if hps_type == 'pymafx': |
|
img_pymafx_lst.append( |
|
get_pymafx( |
|
transform_to_tensor(512, constants.IMG_NORM_MEAN, constants.IMG_NORM_STD)(Image.fromarray(img_np)), |
|
landmarks)) |
|
|
|
img_crop_lst.append(torch.tensor(img_crop).permute(2, 0, 1) / 255.0) |
|
img_icon_lst.append(img_icon) |
|
img_hps_lst.append(img_hps) |
|
img_mask_lst.append(torch.tensor(img_mask[..., 0])) |
|
uncrop_param_lst.append(uncrop_param) |
|
landmark_lst.append(landmarks['body']) |
|
|
|
hands_visibility = [True, True] |
|
if landmarks['lhand'][:, -1].mean() == 0.: |
|
hands_visibility[0] = False |
|
if landmarks['rhand'][:, -1].mean() == 0.: |
|
hands_visibility[1] = False |
|
hands_visibility_lst.append(hands_visibility) |
|
|
|
return_dict = { |
|
"img_icon": torch.stack(img_icon_lst).float(), |
|
"img_crop": torch.stack(img_crop_lst).float(), |
|
"img_hps": torch.stack(img_hps_lst).float(), |
|
"img_raw": img_raw, |
|
"img_mask": torch.stack(img_mask_lst).float(), |
|
"uncrop_param": uncrop_param, |
|
"landmark": torch.stack(landmark_lst), |
|
"hands_visibility": hands_visibility_lst, |
|
} |
|
|
|
img_pymafx = {} |
|
|
|
if len(img_pymafx_lst) > 0: |
|
for idx in range(len(img_pymafx_lst)): |
|
for key in img_pymafx_lst[idx].keys(): |
|
if key not in img_pymafx.keys(): |
|
img_pymafx[key] = [img_pymafx_lst[idx][key]] |
|
else: |
|
img_pymafx[key] += [img_pymafx_lst[idx][key]] |
|
|
|
for key in img_pymafx.keys(): |
|
img_pymafx[key] = torch.stack(img_pymafx[key]).float() |
|
|
|
return_dict.update({"img_pymafx": img_pymafx}) |
|
|
|
return return_dict |
|
|
|
|
|
def get_transform(center, scale, res): |
|
"""Generate transformation matrix.""" |
|
h = 100 * scale |
|
t = np.zeros((3, 3)) |
|
t[0, 0] = float(res[1]) / h |
|
t[1, 1] = float(res[0]) / h |
|
t[0, 2] = res[1] * (-float(center[0]) / h + 0.5) |
|
t[1, 2] = res[0] * (-float(center[1]) / h + 0.5) |
|
t[2, 2] = 1 |
|
|
|
return t |
|
|
|
|
|
def transform(pt, center, scale, res, invert=0): |
|
"""Transform pixel location to different reference.""" |
|
t = get_transform(center, scale, res) |
|
if invert: |
|
t = np.linalg.inv(t) |
|
new_pt = np.array([pt[0] - 1, pt[1] - 1, 1.0]).T |
|
new_pt = np.dot(t, new_pt) |
|
return np.around(new_pt[:2]).astype(np.int16) |
|
|
|
|
|
def crop(img, center, scale, res): |
|
"""Crop image according to the supplied bounding box.""" |
|
|
|
img_height, img_width = img.shape[:2] |
|
|
|
|
|
ul = np.array(transform([0, 0], center, scale, res, invert=1)) |
|
|
|
|
|
br = np.array(transform(res, center, scale, res, invert=1)) |
|
|
|
new_shape = [br[1] - ul[1], br[0] - ul[0]] |
|
if len(img.shape) > 2: |
|
new_shape += [img.shape[2]] |
|
new_img = np.zeros(new_shape) |
|
|
|
|
|
new_x = max(0, -ul[0]), min(br[0], img_width) - ul[0] |
|
new_y = max(0, -ul[1]), min(br[1], img_height) - ul[1] |
|
|
|
|
|
old_x = max(0, ul[0]), min(img_width, br[0]) |
|
old_y = max(0, ul[1]), min(img_height, br[1]) |
|
|
|
new_img[new_y[0]:new_y[1], new_x[0]:new_x[1]] = img[old_y[0]:old_y[1], old_x[0]:old_x[1]] |
|
new_img = F.interpolate( |
|
torch.tensor(new_img).permute(2, 0, 1).unsqueeze(0), res, mode='bilinear').permute(0, 2, 3, |
|
1)[0].numpy().astype(np.uint8) |
|
|
|
return new_img, (old_x, new_x, old_y, new_y, new_shape) |
|
|
|
|
|
def crop_segmentation(org_coord, res, cropping_parameters): |
|
old_x, new_x, old_y, new_y, new_shape = cropping_parameters |
|
|
|
new_coord = np.zeros((org_coord.shape)) |
|
new_coord[:, 0] = new_x[0] + (org_coord[:, 0] - old_x[0]) |
|
new_coord[:, 1] = new_y[0] + (org_coord[:, 1] - old_y[0]) |
|
|
|
new_coord[:, 0] = res[0] * (new_coord[:, 0] / new_shape[1]) |
|
new_coord[:, 1] = res[1] * (new_coord[:, 1] / new_shape[0]) |
|
|
|
return new_coord |
|
|
|
|
|
def corner_align(ul, br): |
|
|
|
if ul[1] - ul[0] != br[1] - br[0]: |
|
ul[1] = ul[0] + br[1] - br[0] |
|
|
|
return ul, br |
|
|
|
|
|
def uncrop(img, center, scale, orig_shape): |
|
"""'Undo' the image cropping/resizing. |
|
This function is used when evaluating mask/part segmentation. |
|
""" |
|
|
|
res = img.shape[:2] |
|
|
|
|
|
ul = np.array(transform([0, 0], center, scale, res, invert=1)) |
|
|
|
br = np.array(transform(res, center, scale, res, invert=1)) |
|
|
|
|
|
ul, br = corner_align(ul, br) |
|
|
|
|
|
crop_shape = [br[1] - ul[1], br[0] - ul[0]] |
|
new_img = np.zeros(orig_shape, dtype=np.uint8) |
|
|
|
|
|
new_x = max(0, -ul[0]), min(br[0], orig_shape[1]) - ul[0] |
|
new_y = max(0, -ul[1]), min(br[1], orig_shape[0]) - ul[1] |
|
|
|
|
|
old_x = max(0, ul[0]), min(orig_shape[1], br[0]) |
|
old_y = max(0, ul[1]), min(orig_shape[0], br[1]) |
|
|
|
img = np.array(Image.fromarray(img.astype(np.uint8)).resize(crop_shape)) |
|
|
|
new_img[old_y[0]:old_y[1], old_x[0]:old_x[1]] = img[new_y[0]:new_y[1], new_x[0]:new_x[1]] |
|
|
|
return new_img |
|
|
|
|
|
def rot_aa(aa, rot): |
|
"""Rotate axis angle parameters.""" |
|
|
|
R = np.array([ |
|
[np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0], |
|
[np.sin(np.deg2rad(-rot)), np.cos(np.deg2rad(-rot)), 0], |
|
[0, 0, 1], |
|
]) |
|
|
|
per_rdg, _ = cv2.Rodrigues(aa) |
|
|
|
resrot, _ = cv2.Rodrigues(np.dot(R, per_rdg)) |
|
aa = (resrot.T)[0] |
|
return aa |
|
|
|
|
|
def flip_img(img): |
|
"""Flip rgb images or masks. |
|
channels come last, e.g. (256,256,3). |
|
""" |
|
img = np.fliplr(img) |
|
return img |
|
|
|
|
|
def flip_kp(kp, is_smpl=False): |
|
"""Flip keypoints.""" |
|
if len(kp) == 24: |
|
if is_smpl: |
|
flipped_parts = constants.SMPL_JOINTS_FLIP_PERM |
|
else: |
|
flipped_parts = constants.J24_FLIP_PERM |
|
elif len(kp) == 49: |
|
if is_smpl: |
|
flipped_parts = constants.SMPL_J49_FLIP_PERM |
|
else: |
|
flipped_parts = constants.J49_FLIP_PERM |
|
kp = kp[flipped_parts] |
|
kp[:, 0] = -kp[:, 0] |
|
return kp |
|
|
|
|
|
def flip_pose(pose): |
|
"""Flip pose. |
|
The flipping is based on SMPL parameters. |
|
""" |
|
flipped_parts = constants.SMPL_POSE_FLIP_PERM |
|
pose = pose[flipped_parts] |
|
|
|
pose[1::3] = -pose[1::3] |
|
pose[2::3] = -pose[2::3] |
|
return pose |
|
|
|
|
|
def normalize_2d_kp(kp_2d, crop_size=224, inv=False): |
|
|
|
if not inv: |
|
ratio = 1.0 / crop_size |
|
kp_2d = 2.0 * kp_2d * ratio - 1.0 |
|
else: |
|
ratio = 1.0 / crop_size |
|
kp_2d = (kp_2d + 1.0) / (2 * ratio) |
|
|
|
return kp_2d |
|
|
|
|
|
def visualize_landmarks(image, joints, color): |
|
|
|
img_w, img_h = image.shape[:2] |
|
|
|
for joint in joints: |
|
image = cv2.circle(image, (int(joint[0] * img_w), int(joint[1] * img_h)), 5, color) |
|
|
|
return image |
|
|
|
|
|
def generate_heatmap(joints, heatmap_size, sigma=1, joints_vis=None): |
|
""" |
|
param joints: [num_joints, 3] |
|
param joints_vis: [num_joints, 3] |
|
return: target, target_weight(1: visible, 0: invisible) |
|
""" |
|
num_joints = joints.shape[0] |
|
device = joints.device |
|
cur_device = torch.device(device.type, device.index) |
|
if not hasattr(heatmap_size, "__len__"): |
|
|
|
heatmap_size = [heatmap_size, heatmap_size] |
|
assert len(heatmap_size) == 2 |
|
target_weight = np.ones((num_joints, 1), dtype=np.float32) |
|
if joints_vis is not None: |
|
target_weight[:, 0] = joints_vis[:, 0] |
|
target = torch.zeros( |
|
(num_joints, heatmap_size[1], heatmap_size[0]), |
|
dtype=torch.float32, |
|
device=cur_device, |
|
) |
|
|
|
tmp_size = sigma * 3 |
|
|
|
for joint_id in range(num_joints): |
|
mu_x = int(joints[joint_id][0] * heatmap_size[0] + 0.5) |
|
mu_y = int(joints[joint_id][1] * heatmap_size[1] + 0.5) |
|
|
|
ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)] |
|
br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)] |
|
if (ul[0] >= heatmap_size[0] or ul[1] >= heatmap_size[1] or br[0] < 0 or br[1] < 0): |
|
|
|
target_weight[joint_id] = 0 |
|
continue |
|
|
|
|
|
size = 2 * tmp_size + 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x = torch.arange(0, size, dtype=torch.float32, device=cur_device) |
|
y = x.unsqueeze(-1) |
|
x0 = y0 = size // 2 |
|
|
|
g = torch.exp(-((x - x0)**2 + (y - y0)**2) / (2 * sigma**2)) |
|
|
|
|
|
g_x = max(0, -ul[0]), min(br[0], heatmap_size[0]) - ul[0] |
|
g_y = max(0, -ul[1]), min(br[1], heatmap_size[1]) - ul[1] |
|
|
|
img_x = max(0, ul[0]), min(br[0], heatmap_size[0]) |
|
img_y = max(0, ul[1]), min(br[1], heatmap_size[1]) |
|
|
|
v = target_weight[joint_id] |
|
if v > 0.5: |
|
target[joint_id][img_y[0]:img_y[1], img_x[0]:img_x[1]] = g[g_y[0]:g_y[1], g_x[0]:g_x[1]] |
|
|
|
return target, target_weight |
|
|