Spaces:
Sleeping
Sleeping
Update appStore/rag.py
Browse files- appStore/rag.py +3 -177
appStore/rag.py
CHANGED
@@ -1,106 +1,4 @@
|
|
1 |
-
# import os
|
2 |
-
# # import json
|
3 |
-
# import numpy as np
|
4 |
-
# import pandas as pd
|
5 |
-
# import openai
|
6 |
-
# from haystack.schema import Document
|
7 |
-
# import streamlit as st
|
8 |
-
# from tenacity import retry, stop_after_attempt, wait_random_exponential
|
9 |
-
|
10 |
-
|
11 |
-
# # Get openai API key
|
12 |
-
# # openai.api_key = os.environ["OPENAI_API_KEY"]
|
13 |
-
# hf_token = os.environ["HF_API_KEY"]
|
14 |
-
# #model_select = "gpt-3.5-turbo-0125"
|
15 |
-
# model_select ="gpt-4"
|
16 |
-
|
17 |
-
# # define a special function for putting the prompt together (as we can't use haystack)
|
18 |
-
# def get_prompt(context, label):
|
19 |
-
# base_prompt="Summarize the following context efficiently in bullet points, the less the better - but keep concrete goals. \
|
20 |
-
# Summarize only elements of the context that address vulnerability of "+label+" to climate change. \
|
21 |
-
# If there is no mention of "+label+" in the context, return nothing. \
|
22 |
-
# Formatting example: \
|
23 |
-
# - Bullet point 1 \
|
24 |
-
# - Bullet point 2 \
|
25 |
-
# "
|
26 |
-
|
27 |
-
# # Add the meta data for references
|
28 |
-
# # context = ' - '.join([d.content for d in docs])
|
29 |
-
# prompt = base_prompt+"; Context: "+context+"; Answer:"
|
30 |
-
|
31 |
-
# return prompt
|
32 |
-
|
33 |
-
# # def get_prompt(context, label):
|
34 |
-
# # base_prompt="Summarize the following context efficiently in bullet points, the less the better - but keep concrete goals. \
|
35 |
-
# # Summarize only elements of the context that address vulnerability to climate change. \
|
36 |
-
# # Formatting example: \
|
37 |
-
# # - Bullet point 1 \
|
38 |
-
# # - Bullet point 2 \
|
39 |
-
# # "
|
40 |
-
|
41 |
-
# # # Add the meta data for references
|
42 |
-
# # # context = ' - '.join([d.content for d in docs])
|
43 |
-
# # prompt = base_prompt+"; Context: "+context+"; Answer:"
|
44 |
-
|
45 |
-
# # return prompt
|
46 |
-
|
47 |
-
# # base_prompt="Summarize the following context efficiently in bullet points, the less the better- but keep concrete goals. \
|
48 |
-
# # Summarize only activities that address the vulnerability of "+label+" to climate change. \
|
49 |
-
# # Formatting example: \
|
50 |
-
# # - Collect and utilize gender-disaggregated data to inform and improve climate change adaptation efforts. \
|
51 |
-
# # - Prioritize gender sensitivity in adaptation options, ensuring participation and benefits for women, who are more vulnerable to climate impacts. \
|
52 |
-
# # "
|
53 |
-
# # # convert df rows to Document object so we can feed it into the summarizer easily
|
54 |
-
# # def get_document(df):
|
55 |
-
# # # we take a list of each extract
|
56 |
-
# # ls_dict = []
|
57 |
-
# # for index, row in df.iterrows():
|
58 |
-
# # # Create a Document object for each row (we only need the text)
|
59 |
-
# # doc = Document(
|
60 |
-
# # row['text'],
|
61 |
-
# # meta={
|
62 |
-
# # 'label': row['Vulnerability Label']}
|
63 |
-
# # )
|
64 |
-
# # # Append the Document object to the documents list
|
65 |
-
# # ls_dict.append(doc)
|
66 |
-
|
67 |
-
# # return ls_dict
|
68 |
-
|
69 |
-
|
70 |
-
# # exception handling for issuing multiple API calls to openai (exponential backoff)
|
71 |
-
# @retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(6))
|
72 |
-
# def completion_with_backoff(**kwargs):
|
73 |
-
# return openai.ChatCompletion.create(**kwargs)
|
74 |
-
|
75 |
-
|
76 |
-
# # construct RAG query, send to openai and process response
|
77 |
-
# def run_query(context, label):
|
78 |
-
# '''
|
79 |
-
# For non-streamed completion, enable the following 2 lines and comment out the code below
|
80 |
-
# '''
|
81 |
-
# # res = openai.ChatCompletion.create(model=model_select, messages=[{"role": "user", "content": get_prompt(docs)}])
|
82 |
-
# # result = res.choices[0].message.content
|
83 |
-
|
84 |
-
# # instantiate ChatCompletion as a generator object (stream is set to True)
|
85 |
-
# response = completion_with_backoff(model=model_select, messages=[{"role": "user", "content": get_prompt(context, label)}], stream=True)
|
86 |
-
# # iterate through the streamed output
|
87 |
-
# report = []
|
88 |
-
# res_box = st.empty()
|
89 |
-
# for chunk in response:
|
90 |
-
# # extract the object containing the text (totally different structure when streaming)
|
91 |
-
# chunk_message = chunk['choices'][0]['delta']
|
92 |
-
# # test to make sure there is text in the object (some don't have)
|
93 |
-
# if 'content' in chunk_message:
|
94 |
-
# report.append(chunk_message.content) # extract the message
|
95 |
-
# # add the latest text and merge it with all previous
|
96 |
-
# result = "".join(report).strip()
|
97 |
-
# # res_box.success(result) # output to response text box
|
98 |
-
# res_box.success(result)
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
import os
|
103 |
-
# import json
|
104 |
import numpy as np
|
105 |
import pandas as pd
|
106 |
import openai
|
@@ -121,99 +19,27 @@ def get_prompt(context, label):
|
|
121 |
If there is no mention of "+label+" in the context, return nothing. \
|
122 |
Formatting example: \
|
123 |
- Bullet point 1 \
|
124 |
-
- Bullet point 2
|
125 |
-
"
|
126 |
-
|
127 |
-
# Add the meta data for references
|
128 |
-
# context = ' - '.join([d.content for d in docs])
|
129 |
prompt = base_prompt+"; Context: "+context+"; Answer:"
|
130 |
|
131 |
return prompt
|
132 |
|
133 |
|
134 |
-
|
135 |
-
|
136 |
# # exception handling for issuing multiple API calls to openai (exponential backoff)
|
137 |
# @retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(6))
|
138 |
# def completion_with_backoff(**kwargs):
|
139 |
# return openai.ChatCompletion.create(**kwargs)
|
140 |
|
141 |
-
|
142 |
-
def get_prompt(context, label):
|
143 |
-
base_prompt="Summarize the following context efficiently in bullet points, the less the better - but keep concrete goals. \
|
144 |
-
Summarize only elements of the context that address vulnerability of "+label+" to climate change. \
|
145 |
-
If there is no mention of "+label+" in the context, return nothing. \
|
146 |
-
Do not include an introduction sentence, just the bullet points as per below. \
|
147 |
-
Formatting example: \
|
148 |
-
- Bullet point 1 \
|
149 |
-
- Bullet point 2 \
|
150 |
-
"
|
151 |
-
|
152 |
-
# Add the meta data for references
|
153 |
-
# context = ' - '.join([d.content for d in docs])
|
154 |
-
prompt = base_prompt+"; Context: "+context+"; Answer:"
|
155 |
-
|
156 |
-
return prompt
|
157 |
-
|
158 |
-
|
159 |
-
# # construct RAG query, send to openai and process response
|
160 |
-
# def run_query(context, label, chatbot_role):
|
161 |
-
# '''
|
162 |
-
# For non-streamed completion, enable the following 2 lines and comment out the code below
|
163 |
-
# '''
|
164 |
-
# # res = openai.ChatCompletion.create(model=model_select, messages=[{"role": "user", "content": get_prompt(docs)}])
|
165 |
-
# # result = res.choices[0].message.content
|
166 |
-
|
167 |
-
# messages = [
|
168 |
-
# ChatMessage(role="system", content=chatbot_role),
|
169 |
-
# ChatMessage(role="user", content=get_prompt(context, label)),
|
170 |
-
# ]
|
171 |
-
# response = llm.chat(messages)
|
172 |
-
# return(response)
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
# tokenizer = AutoTokenizer.from_pretrained(
|
177 |
-
# "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
178 |
-
# token=hf_token,
|
179 |
-
# )
|
180 |
-
|
181 |
-
# stopping_ids = [
|
182 |
-
# tokenizer.eos_token_id,
|
183 |
-
# tokenizer.convert_tokens_to_ids("<|eot_id|>"),
|
184 |
-
# ]
|
185 |
-
|
186 |
-
# Define the role of the chatbot
|
187 |
-
# chatbot_role = """You are an analyst specializing in climate change impact assessments and producing insights from policy documents."""
|
188 |
-
|
189 |
-
# construct RAG query, send to openai and process response
|
190 |
def run_query(context, label):
|
191 |
'''
|
192 |
For non-streamed completion, enable the following 2 lines and comment out the code below
|
193 |
'''
|
194 |
chatbot_role = """You are an analyst specializing in climate change impact assessments and producing insights from policy documents."""
|
195 |
-
|
196 |
messages = [{"role": "system", "content": chatbot_role},{"role": "user", "content": get_prompt(context, label)}]
|
197 |
|
198 |
-
# res = openai.ChatCompletion.create(model=model_select, messages=[{"role": "user", "content": get_prompt(docs)}])
|
199 |
-
# result = res.choices[0].message.content
|
200 |
-
|
201 |
# Initialize the client, pointing it to one of the available models
|
202 |
-
client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct", token = hf_token)
|
203 |
-
|
204 |
-
# response = client.chat.completions.create(
|
205 |
-
# model="meta-llama/Meta-Llama-3.1-8B-Instruct",
|
206 |
-
# messages=[
|
207 |
-
# ChatMessage(role="system", content=chatbot_role),
|
208 |
-
# ChatMessage(role="user", content=get_prompt(context, label)),
|
209 |
-
# ],
|
210 |
-
# stream=True,
|
211 |
-
# max_tokens=500
|
212 |
-
# )
|
213 |
-
|
214 |
-
# iterate and print stream
|
215 |
-
# for message in chat_completion:
|
216 |
-
# print(message.choices[0].delta.content, end="")
|
217 |
|
218 |
# instantiate ChatCompletion as a generator object (stream is set to True)
|
219 |
# response = completion_with_backoff(model=model_select, messages=[{"role": "user", "content": get_prompt(context, label)}], stream=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
|
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
import openai
|
|
|
19 |
If there is no mention of "+label+" in the context, return nothing. \
|
20 |
Formatting example: \
|
21 |
- Bullet point 1 \
|
22 |
+
- Bullet point 2 "
|
|
|
|
|
|
|
|
|
23 |
prompt = base_prompt+"; Context: "+context+"; Answer:"
|
24 |
|
25 |
return prompt
|
26 |
|
27 |
|
|
|
|
|
28 |
# # exception handling for issuing multiple API calls to openai (exponential backoff)
|
29 |
# @retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(6))
|
30 |
# def completion_with_backoff(**kwargs):
|
31 |
# return openai.ChatCompletion.create(**kwargs)
|
32 |
|
33 |
+
# construct query, send to HF API and process response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
def run_query(context, label):
|
35 |
'''
|
36 |
For non-streamed completion, enable the following 2 lines and comment out the code below
|
37 |
'''
|
38 |
chatbot_role = """You are an analyst specializing in climate change impact assessments and producing insights from policy documents."""
|
|
|
39 |
messages = [{"role": "system", "content": chatbot_role},{"role": "user", "content": get_prompt(context, label)}]
|
40 |
|
|
|
|
|
|
|
41 |
# Initialize the client, pointing it to one of the available models
|
42 |
+
client = InferenceClient("meta-llama/Meta-Llama-3.1-8B-Instruct", token = hf_token)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
# instantiate ChatCompletion as a generator object (stream is set to True)
|
45 |
# response = completion_with_backoff(model=model_select, messages=[{"role": "user", "content": get_prompt(context, label)}], stream=True)
|