Spaces:
Sleeping
Sleeping
File size: 21,751 Bytes
47756f1 83a24ec 47756f1 83a24ec b125eed b0ab312 47756f1 dbd62d7 1968c31 dbd62d7 47756f1 1968c31 47756f1 84050ab 47756f1 aeb4fb8 2f12850 aeb4fb8 47756f1 eb83e3d 47756f1 0a2b1df 47756f1 84050ab f1aec70 3f5271b f1aec70 329d6cf 8f420e0 55c1b89 b0ab312 55c1b89 b125eed 55c1b89 329d6cf e17479b b125eed 87597d0 b125eed 87597d0 b125eed b0ab312 fa42253 b0ab312 b125eed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 |
# set path
import glob, os, sys;
sys.path.append('../utils')
#import needed libraries
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import streamlit as st
from utils.target_classifier import load_targetClassifier, target_classification
import logging
logger = logging.getLogger(__name__)
from utils.config import get_classifier_params
from utils.preprocessing import paraLengthCheck
from io import BytesIO
import xlsxwriter
import plotly.express as px
from utils.target_classifier import label_dict
from appStore.rag import run_query
from math import exp
import re
import json
import nltk
from nltk.corpus import stopwords
nltk.download('stopwords')
import openai
openai_api_key = os.environ["OPEN_AI_KEY"]
# Declare all the necessary variables
classifier_identifier = 'target'
params = get_classifier_params(classifier_identifier)
@st.cache_data
def to_excel(df,sectorlist):
len_df = len(df)
output = BytesIO()
writer = pd.ExcelWriter(output, engine='xlsxwriter')
df.to_excel(writer, index=False, sheet_name='Sheet1')
workbook = writer.book
worksheet = writer.sheets['Sheet1']
worksheet.data_validation('S2:S{}'.format(len_df),
{'validate': 'list',
'source': ['No', 'Yes', 'Discard']})
worksheet.data_validation('X2:X{}'.format(len_df),
{'validate': 'list',
'source': sectorlist + ['Blank']})
worksheet.data_validation('T2:T{}'.format(len_df),
{'validate': 'list',
'source': sectorlist + ['Blank']})
worksheet.data_validation('U2:U{}'.format(len_df),
{'validate': 'list',
'source': sectorlist + ['Blank']})
worksheet.data_validation('V2:V{}'.format(len_df),
{'validate': 'list',
'source': sectorlist + ['Blank']})
worksheet.data_validation('W2:U{}'.format(len_df),
{'validate': 'list',
'source': sectorlist + ['Blank']})
writer.save()
processed_data = output.getvalue()
return processed_data
def app():
### Main app code ###
with st.container():
if 'key1' in st.session_state:
# Load the existing dataset
df = st.session_state.key1
# Filter out all paragraphs that do not have a reference to groups
df = df[df['Vulnerability Label'].apply(lambda x: len(x) > 0 and 'Other' not in x)]
# Load the classifier model
classifier = load_targetClassifier(classifier_name=params['model_name'])
st.session_state['{}_classifier'.format(classifier_identifier)] = classifier
df = target_classification(haystack_doc=df,
threshold= params['threshold'])
# Rename column
df.rename(columns={'Target Label': 'Specific action/target/measure mentioned'}, inplace=True)
st.session_state.key2 = df
vc_prompt="""
You are assessing the accuracy of a multi-label classifier. The classifier seeks to assess the relevance of a given passage of context to any of 18 classes:
'Agricultural communities',
'Children',
'Coastal communities',
'Ethnic, racial or other minorities',
'Fishery communities',
'Informal sector workers',
'Members of indigenous and local communities',
'Migrants and displaced persons',
'Older persons',
'Other',
'Persons living in poverty',
'Persons with disabilities',
'Persons with pre-existing health conditions',
'Residents of drought-prone regions',
'Rural populations',
'Sexual minorities (LGBTQI+)',
'Urban populations',
'Women and other genders'
If there is a semantic relevance or keyword(s) match between labels and context, then assess accuracy as a boolean True.
Assessing class relevance may be tricky in some cases as the context can use technical language which is sometimes ambiguous. Please take your time to ensure a robust assessment.
If you can't decide, err on the side of the classifier, and assume it is correct.
Use the examples below for reference:
EXAMPLE 1
LABEL: ['Agricultural communities', 'Residents of drought-prone regions']
CONTEXT: "Future climatic predictions for Kenya indicate possible temperature increase of 1C by 2020 and 2.3C by 2050. These changes unless effectively mitigated, will likely result to erosion of the productive assets and the weakening of coping strategies and resilience of rain-fed farming systems, especially in the arid and semi-arid lands."
RESPONSE: True
EXAMPLE 2
LABEL: ['Fishery communities']
CONTEXT: "The reduced water availability resulting from frequent droughts also limits aquaculture development. Forests and agroforestry The farmed fisheries resources include the trout fish in cold water high altitude areas and tilapia, catfish, common carp for warmer water low altitude areas. Figure 5 shows the quantities and monetary value of fish produced in Kenya between 2005 and 2016."
RESPONSE: True
EXAMPLE 3
LABEL: ['Persons with disabilities']
CONTEXT: "In addressing climate change issues, public entities are required to undertake public awareness and consultations, and ensure gender mainstreaming, in line with the Constitution and the Climate Change Bill (2014). 5. Means of implementation Kenya's contribution will be implemented with both domestic and international support."
RESPONSE: False
EXAMPLE 4
LABEL: ['Children', 'Women and other genders']
CONTEXT: "Enhance quality control and food safety by relevant institutions along crop, livestock and fisheries value chains. Enhance use of low greenhouse gas emitting fish production technologies and practices. Promote integrated farming systems comprising crops, livestock, aquaculture and farm forestry. Create awareness and capacity build women, youth and venerable groups (WY&VG) on CSA."
RESPONSE: True
EXAMPLE 5
LABEL: ['Ethnic, racial or other minorities']
CONTEXT: "Harmonize livestock vaccinations across the bordering counties and across the international borders. Facilitate management of veterinary drug residues, carcasses and agrochemicals. Promote efficient use of farm mechanization. Promote mechanized and animal powered conservation tillage practices as compared to conventional tillage. Promote value addition of farm produce through cottage industries."
RESPONSE: False
EXAMPLE 6
LABEL: ['Agricultural communities']
CONTEXT: "There is also no traceability mechanism for produce and products from farm to folk. Value addition will ensure longer shelf life, reduced transaction costs and higher incomes. Summary of Actions: Identify and promote existing value addition technologies. Incentivize the private sector to invest in agricultural value addition."
RESPONSE: False
EXAMPLE 7
LABEL: ['Agricultural communities', 'Rural populations']
CONTEXT: "Kenya's total greenhouse gas (GHG) emissions are relatively low, standing at 73 MtCO2eq in 2010, out of which 75%/ are from the land use, land-use change and forestry (LULUCF) and agriculture sectors. This may be explained by the reliance on wood fuel by a large proportion of the population coupled with the increasing demand for agricultural land and urban development."
RESPONSE: True
Return the assessment as a boolean True or False.
Return only the boolean, and nothing else.
Now assess the following sample:
"""
tma_prompt="""
You are assessing the accuracy of a binary ('YES'/'NO') classifier. The classifier classifies a given passage of text as to whether it contains reference to a target, measure, action, and plans
in the context of the United Nations Framework Convention on Climate Change (UNFCCC) and the Paris Agreement.
The text is extracted from Nationally Determined Contributions (NDCs) documents.
The concepts of targets, measures, actions, and plans are defined below:
1. Targets
• Definition: Targets in the NDCs refer to the specific, quantified objectives that each country sets for itself to reduce greenhouse gas (GHG) emissions and mitigate climate change. These targets reflect the level of ambition a country is willing to commit to in its climate action.
• Example in NDCs: A common form of a target is a percentage reduction in GHG emissions by a certain year, such as “reducing emissions by 50% by 2030 compared to 1990 levels.” Targets can also be sector-specific, such as setting renewable energy capacity goals.
2. Measures
• Definition: Measures are the policies, regulations, and actions that are implemented to achieve the targets set in the NDCs. These are the instruments through which a country can ensure that it is on the right path to meet its climate goals.
• Example in NDCs: Measures can include implementing a carbon tax, introducing renewable energy incentives, or regulations to improve energy efficiency in buildings or transportation sectors. These could also involve reforestation or land-use changes to enhance carbon sinks.
3. Actions
• Definition: Actions refer to the specific activities, projects, or steps that are undertaken to implement the measures and meet the set targets. Actions are the tangible efforts that contribute to reducing emissions or adapting to climate change impacts.
• Example in NDCs: Actions might include building solar or wind power plants, electrifying transportation systems, or retrofitting existing infrastructure to make it more energy efficient. Actions are often the ground-level, operational steps that translate plans into reality.
If you agree with the classifier, then assess accuracy as a boolean True.
Note - assessing targets, measures and actions may be tricky in some cases as the text can use technical language which is sometimes ambiguous.
Please take your time to ensure a robust assessment.
If you can't decide, err on the side of the classifier, and assume it is correct.
EXAMPLE 1:
LABEL: 'YES'
CONTEXT: "This will lead to more climate related vulnerabilities thereby predisposing farming communities to food insecurity and more poverty. In response to this scenario, the Government has been exploring innovative and transformative measures to assist stakeholders across the agricultural value chains to manage the effects of current and projected change of climate patterns."
RESPONSE: True
EXAMPLE 2:
LABEL: 'NO'
CONTEXT: "Kenya's total greenhouse gas (GHG) emissions are relatively low, standing at 73 MtCO2eq in 2010, out of which 75%/ are from the land use, land-use change and forestry (LULUCF) and agriculture sectors. This may be explained by the reliance on wood fuel by a large proportion of the population coupled with the increasing demand for agricultural land and urban development."
RESPONSE: True
EXAMPLE 3:
LABEL: 'YES'
CONTEXT: "1.1 National Circumstances Kenya is located in the Greater Horn of Africa region, which is highly vulnerable to the impacts of climate change. More than 80% of the country’s landmass is arid and semi-arid land (ASAL) with poor infrastructure, and other developmental challenges."
RESPONSE: True
Return the assessment as a boolean True or False.
Return only the boolean, and nothing else.
Now assess the following sample:
"""
def send_to_chatgpt_api(context, label, prompt, openai_api_key, logprobs_flag=None, logprobs_n=None):
# Combine the result object and context with the new prompt
combined_message = f"""
{prompt}
LABEL: {label}
CONTEXT: {context}
RESPONSE:
"""
# Set up the OpenAI API
openai.api_key = openai_api_key
# Send the combined message to the ChatGPT API
response = openai.ChatCompletion.create(
# model="gpt-4o-mini",
model="gpt-4o-mini-2024-07-18",
# model="gpt-4o-2024-08-06",
messages=[
{"role": "system", "content": "You are ChatGPT."},
{"role": "user", "content": combined_message}
],
logprobs=logprobs_flag, # whether to return log probabilities of the output tokens or not. If true, returns the log probabilities of each output token returned in the content of message..
top_logprobs=logprobs_n,
)
# Get the response from the API
if logprobs_flag:
gpt_response = response.choices[0].logprobs.content[0].top_logprobs[0]
else:
gpt_response = response.choices[0].message['content']
return gpt_response
# Fuzzy matching
def levenshtein_distance(a, b):
# Initialize the matrix
dp = [[0 for _ in range(len(b) + 1)] for _ in range(len(a) + 1)]
# Base cases
for i in range(len(a) + 1):
dp[i][0] = i
for j in range(len(b) + 1):
dp[0][j] = j
# Fill the matrix
for i in range(1, len(a) + 1):
for j in range(1, len(b) + 1):
if a[i - 1] == b[j - 1]:
cost = 0
else:
cost = 1
dp[i][j] = min(dp[i - 1][j] + 1, # Deletion
dp[i][j - 1] + 1, # Insertion
dp[i - 1][j - 1] + cost) # Substitution
# Return the Levenshtein distance
return dp[-1][-1]
def similarity_score(a, b):
max_len = max(len(a), len(b))
if max_len == 0:
return 1.0
return (max_len - levenshtein_distance(a, b)) / max_len
def remove_stopwords(text):
stop_words = set(stopwords.words('english'))
# Tokenize the string and filter out stopwords
return ' '.join([word for word in text.split() if word.lower() not in stop_words])
def fuzzy_match_sequence(sequence, long_string, threshold=0.4):
# If the sequence is a single string, split it into phrases (based on commas or similar punctuation)
if isinstance(sequence, str):
sequence = re.split(r',\s*|\s+', sequence)
# Remove stopwords from both the sequence and the long string
sequence = [remove_stopwords(phrase) for phrase in sequence]
long_string = remove_stopwords(long_string)
# Ensure that the input is now a list or tuple
if not isinstance(sequence, (list, tuple)):
sequence = list(sequence)
# Split the long string into words
long_string_words = long_string.split()
# Perform Levenshtein-based fuzzy matching and calculate overall similarity score
total_score = 0
matches = []
count_high_prob_matches = 0
for word in sequence:
# Find the best match for the current word in the long string
best_match_score, best_match_word = max((similarity_score(word, ls_word), ls_word) for ls_word in long_string_words)
# Only count matches with a similarity score above the threshold
if best_match_score >= threshold:
count_high_prob_matches += 1
# Cap the total score at 1 and calculate contribution
total_score += min(best_match_score, 1 - total_score) # Ensure the score doesn't go above 1
matches.append(f"Keyword '{word}' matched '{best_match_word}' with a similarity score of {best_match_score:.2f}")
# The total score should never exceed 1, ensure it is capped at 1
total_score = round(min(total_score, 1),2)
return total_score
def target_display(model_sel_name, doc_name):
### TABLE Output ###
# Assign dataframe a name
df = st.session_state['key2']
st.write(df)
### RAG Output by group ##
# Expand the DataFrame
df_expand = (
df.query("`Specific action/target/measure mentioned` == 'YES'")
.explode('Vulnerability Label')
)
# Group by 'Vulnerability Label' and concatenate 'text'
df_agg = df_expand.groupby('Vulnerability Label')['text'].agg('; '.join).reset_index()
# st.write(df_agg)
st.markdown("----")
st.markdown('**SUMMARY OF GOALS BY VULNERABILITY LABEL:**')
# Check if the results are already in session state
if 'results_df' not in st.session_state:
# Initialize an empty list to store the results
summary_list = []
results_list = []
# Process the data in the loop
for i in range(0, len(df_agg)):
st.write(df_agg['Vulnerability Label'].iloc[i])
# Run query to get the result
result = run_query(
context=df_agg['text'].iloc[i],
label=df_agg['Vulnerability Label'].iloc[i],
model_sel_name=model_sel_name
)
# Store the Vulnerability Label and the response in a list of dictionaries
summary_list.append({
'document': doc_name,
'text': df_agg['text'].iloc[i],
'label': df_agg['Vulnerability Label'].iloc[i],
'summary': result.get_full_content()
})
# Process the data in the loop
for i in range(0, len(df)):
# Send the result to the ChatGPT API and get the labeled response
vc_response = send_to_chatgpt_api(
context = df['text'].iloc[i],
label = df['Vulnerability Label'].iloc[i],
prompt = vc_prompt,
openai_api_key=openai_api_key,
logprobs_flag=True,
logprobs_n=1)
tma_response = send_to_chatgpt_api(
context = df['text'].iloc[i],
label = df['Specific action/target/measure mentioned'].iloc[i],
prompt = tma_prompt,
openai_api_key=openai_api_key,
logprobs_flag=True,
logprobs_n=1)
# Convert logprobs to % scale
vc_prob = np.round(np.exp(vc_response.logprob),2)
vc_token = vc_response.token
# Convert contrary predictions to probability of positive prediction (inverse)
if vc_token == 'False':
vc_prob_cnv = round(1 - vc_prob,2)
else:
vc_prob_cnv = vc_prob
# Do some fuzzy matching to check for class-related keywords in the text
vc_keywords = fuzzy_match_sequence(str(df['Vulnerability Label'].iloc[i]), str(df['text'].iloc[i]))
# Compute vulnerability classifciation eval
vc_eval = False
if vc_prob_cnv > 0.5 or vc_keywords > 0:
vc_eval = True
# Convert logprobs to % scale
tma_prob = np.round(np.exp(tma_response.logprob),2)
tma_token = tma_response.token
# Convert contrary predictions to probability of positive prediction (inverse)
if tma_token == 'False':
tma_prob_cnv = round(1 - tma_prob,2)
else:
tma_prob_cnv = tma_prob
# Compute TMA classification eval
tma_eval = False
if tma_prob_cnv > 0.5:
tma_eval = True
# Store the Vulnerability Label and the response in a list of dictionaries
results_list.append({
'document': doc_name,
'text': df['text'].iloc[i],
'page': df['page'].iloc[i],
'label': df['Vulnerability Label'].iloc[i],
'target': df['Specific action/target/measure mentioned'].iloc[i],
'VC_prob': vc_prob_cnv,
'VC_keywords': vc_keywords,
'VC_eval': vc_eval,
'TMA_prob': tma_prob_cnv,
'TMA_eval': tma_eval,
'VC_check': None,
'TMA_check': None,
})
# Once the loop is done, convert results to a DataFrame and store in session state
st.session_state['results_df'] = pd.DataFrame(results_list)
st.session_state['summary_df'] = pd.DataFrame(summary_list)
df_full = st.session_state['key1']
num_paragraphs = len(df_full['Vulnerability Label'])
num_references = len(df['Vulnerability Label'])
meta_list = []
# Store the Vulnerability Label and the response in a list of dictionaries
meta_list.append({
'document': doc_name,
'paragraphs': num_paragraphs,
'references': num_references,
})
st.session_state['meta_df'] = pd.DataFrame(meta_list)
# Retrieve the results from session state
meta_df = st.session_state['meta_df']
summary_df = st.session_state['summary_df']
results_df = st.session_state['results_df']
# Use an in-memory buffer to hold the Excel file
excel_buffer = BytesIO()
# Create an Excel writer and write each DataFrame to a separate sheet
with pd.ExcelWriter(excel_buffer, engine='xlsxwriter') as writer:
meta_df.to_excel(writer, sheet_name='Meta', index=False)
summary_df.to_excel(writer, sheet_name='Summary', index=False)
results_df.to_excel(writer, sheet_name='Results', index=False)
# Ensure the buffer is ready for downloading
excel_buffer.seek(0)
# Create a download button for the Excel file
st.download_button(
label="Download LLM Evaluation",
data=excel_buffer,
file_name='eval_' + str.split(doc_name,".")[0] + '.xlsx',
mime='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet',
)
|