File size: 7,694 Bytes
2890711
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
from functools import partial
from typing import List, Optional, Union

import torch
from einops import rearrange, repeat

from sgm.modules.attention import checkpoint, exists
from sgm.modules.diffusionmodules.util import timestep_embedding


### VideoUnet #####
def forward_VideoUnet(
        self,
        x: torch.Tensor,
        timesteps: torch.Tensor,
        context: Optional[torch.Tensor] = None,
        y: Optional[torch.Tensor] = None,
        time_context: Optional[torch.Tensor] = None,
        num_video_frames: Optional[int] = None,
        image_only_indicator: Optional[torch.Tensor] = None,
        RT: Optional[torch.Tensor] = None
    ):
        if RT is not None:
             context = {'RT': RT, 'context': context}

        assert (y is not None) == (
            self.num_classes is not None
        ), "must specify y if and only if the model is class-conditional -> no, relax this TODO"
        hs = []
        t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
        emb = self.time_embed(t_emb)

        ## tbd: check the role of "image_only_indicator"
        num_video_frames = self.num_frames
        image_only_indicator = torch.zeros(
                    x.shape[0]//num_video_frames, num_video_frames
                ).to(x.device) if image_only_indicator is None else image_only_indicator

        if self.num_classes is not None:
            assert y.shape[0] == x.shape[0]
            emb = emb + self.label_emb(y)

        h = x
        for module in self.input_blocks:
            h = module(
                h,
                emb,
                context=context,
                image_only_indicator=image_only_indicator,
                time_context=time_context,
                num_video_frames=num_video_frames
            )
            hs.append(h)
        h = self.middle_block(
            h,
            emb,
            context=context,
            image_only_indicator=image_only_indicator,
            time_context=time_context,
            num_video_frames=num_video_frames
        )
        for module in self.output_blocks:
            h = torch.cat([h, hs.pop()], dim=1)
            h = module(
                h,
                emb,
                context=context,
                image_only_indicator=image_only_indicator,
                time_context=time_context,
                num_video_frames=num_video_frames
            )
        h = h.type(x.dtype)
        return self.out(h)

### VideoTransformerBlock #####

def forward_VideoTransformerBlock(self, x, context, timesteps):
    if self.checkpoint:
        return checkpoint(self._forward, x, context, timesteps)
    else:
        return self._forward(x, context, timesteps=timesteps)


def _forward_VideoTransformerBlock_attan2(self, x, context=None, timesteps=None):
    assert self.timesteps or timesteps
    assert not (self.timesteps and timesteps) or self.timesteps == timesteps
    timesteps = self.timesteps or timesteps
    B, S, C = x.shape
    x = rearrange(x, "(b t) s c -> (b s) t c", t=timesteps)

    if isinstance(context, dict):
        RT = context['RT'] # (b, t, 12)
        context = context['context']
    else:
        RT = None

    if self.ff_in:
        x_skip = x
        x = self.ff_in(self.norm_in(x))
        if self.is_res:
            x += x_skip

    if self.disable_self_attn:
        x = self.attn1(self.norm1(x), context=context) + x
    else:
        x = self.attn1(self.norm1(x)) + x

    if RT is not None:
        # import pdb; pdb.set_trace()
        RT = RT.repeat_interleave(repeats=S, dim=0) # (b*s, t, 12)
        x = torch.cat([x, RT], dim=-1)
            
        x = self.cc_projection(x)

    if self.attn2 is not None:
        if self.switch_temporal_ca_to_sa:
            x = self.attn2(self.norm2(x)) + x
        else:
            x = self.attn2(self.norm2(x), context=context) + x
    x_skip = x
    x = self.ff(self.norm3(x))
    if self.is_res:
        x += x_skip

    x = rearrange(
        x, "(b s) t c -> (b t) s c", s=S, b=B // timesteps, c=C, t=timesteps
    )
    return x


#### BasicTransformerBlock #####
def _forward_BasicTransformerBlock(
    self, x, context=None, additional_tokens=None, n_times_crossframe_attn_in_self=0
):
    if isinstance(context, dict):
        context = context['context']
    x = (
        self.attn1(
            self.norm1(x),
            context=context if self.disable_self_attn else None,
            additional_tokens=additional_tokens,
            n_times_crossframe_attn_in_self=n_times_crossframe_attn_in_self
            if not self.disable_self_attn
            else 0,
        )
        + x
    )
    x = (
        self.attn2(
            self.norm2(x), context=context, additional_tokens=additional_tokens
        )
        + x
    )
    x = self.ff(self.norm3(x)) + x
    return x
    

#### SpatialVideoTransformer #####
def forward_SpatialVideoTransformer(
        self,
        x: torch.Tensor,
        context: Optional[torch.Tensor] = None,
        time_context: Optional[torch.Tensor] = None,
        timesteps: Optional[int] = None,
        image_only_indicator: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        _, _, h, w = x.shape
        x_in = x

        if isinstance(context, dict):
            RT = context['RT']
            context = context['context']
        else:
            RT = None

        spatial_context = None
        if exists(context):
            spatial_context = context

        if self.use_spatial_context:
            assert (
                context.ndim == 3
            ), f"n dims of spatial context should be 3 but are {context.ndim}"

            time_context = context
            time_context_first_timestep = time_context[::timesteps]
            time_context = repeat(
                time_context_first_timestep, "b ... -> (b n) ...", n=h * w
            )
        elif time_context is not None and not self.use_spatial_context:
            time_context = repeat(time_context, "b ... -> (b n) ...", n=h * w)
            if time_context.ndim == 2:
                time_context = rearrange(time_context, "b c -> b 1 c")

        x = self.norm(x)
        if not self.use_linear:
            x = self.proj_in(x)
        x = rearrange(x, "b c h w -> b (h w) c")
        if self.use_linear:
            x = self.proj_in(x)

        num_frames = torch.arange(timesteps, device=x.device)
        num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps)
        num_frames = rearrange(num_frames, "b t -> (b t)")
        t_emb = timestep_embedding(
            num_frames,
            self.in_channels,
            repeat_only=False,
            max_period=self.max_time_embed_period,
        )
        emb = self.time_pos_embed(t_emb)
        emb = emb[:, None, :]

        for it_, (block, mix_block) in enumerate(
            zip(self.transformer_blocks, self.time_stack)
        ):
            x = block(
                x,
                context=spatial_context,
            )

            x_mix = x
            x_mix = x_mix + emb

            if RT is not None:
                x_mix = mix_block(x_mix, context={'context': time_context, 'RT': RT}, timesteps=timesteps)
            else:
                x_mix = mix_block(x_mix, context=time_context, timesteps=timesteps)
            x = self.time_mixer(
                x_spatial=x,
                x_temporal=x_mix,
                image_only_indicator=image_only_indicator,
            )
        if self.use_linear:
            x = self.proj_out(x)
        x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
        if not self.use_linear:
            x = self.proj_out(x)
        out = x + x_in
        return out