import copy
import math
import torch
from torch import nn
from torch.nn import functional as F

import modules.attentions as attentions
import modules.commons as commons
import modules.modules as modules

from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm

import utils
from modules.commons import init_weights, get_padding
from vdecoder.hifigan.models import Generator
from utils import f0_to_coarse

class ResidualCouplingBlock(nn.Module):
  def __init__(self,
      channels,
      hidden_channels,
      kernel_size,
      dilation_rate,
      n_layers,
      n_flows=4,
      gin_channels=0):
    super().__init__()
    self.channels = channels
    self.hidden_channels = hidden_channels
    self.kernel_size = kernel_size
    self.dilation_rate = dilation_rate
    self.n_layers = n_layers
    self.n_flows = n_flows
    self.gin_channels = gin_channels

    self.flows = nn.ModuleList()
    for i in range(n_flows):
      self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
      self.flows.append(modules.Flip())

  def forward(self, x, x_mask, g=None, reverse=False):
    if not reverse:
      for flow in self.flows:
        x, _ = flow(x, x_mask, g=g, reverse=reverse)
    else:
      for flow in reversed(self.flows):
        x = flow(x, x_mask, g=g, reverse=reverse)
    return x


class Encoder(nn.Module):
  def __init__(self,
      in_channels,
      out_channels,
      hidden_channels,
      kernel_size,
      dilation_rate,
      n_layers,
      gin_channels=0):
    super().__init__()
    self.in_channels = in_channels
    self.out_channels = out_channels
    self.hidden_channels = hidden_channels
    self.kernel_size = kernel_size
    self.dilation_rate = dilation_rate
    self.n_layers = n_layers
    self.gin_channels = gin_channels

    self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
    self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
    self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)

  def forward(self, x, x_lengths, g=None):
    # print(x.shape,x_lengths.shape)
    x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
    x = self.pre(x) * x_mask
    x = self.enc(x, x_mask, g=g)
    stats = self.proj(x) * x_mask
    m, logs = torch.split(stats, self.out_channels, dim=1)
    z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
    return z, m, logs, x_mask


class TextEncoder(nn.Module):
  def __init__(self,
      out_channels,
      hidden_channels,
      kernel_size,
      n_layers,
      gin_channels=0,
      filter_channels=None,
      n_heads=None,
      p_dropout=None):
    super().__init__()
    self.out_channels = out_channels
    self.hidden_channels = hidden_channels
    self.kernel_size = kernel_size
    self.n_layers = n_layers
    self.gin_channels = gin_channels
    self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
    self.f0_emb = nn.Embedding(256, hidden_channels)

    self.enc_ =  attentions.Encoder(
        hidden_channels,
        filter_channels,
        n_heads,
        n_layers,
        kernel_size,
        p_dropout)

  def forward(self, x, x_mask, f0=None, noice_scale=1):
    x = x + self.f0_emb(f0).transpose(1,2)
    x = self.enc_(x * x_mask, x_mask)
    stats = self.proj(x) * x_mask
    m, logs = torch.split(stats, self.out_channels, dim=1)
    z = (m + torch.randn_like(m) * torch.exp(logs) * noice_scale) * x_mask

    return z, m, logs, x_mask



class DiscriminatorP(torch.nn.Module):
    def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
        super(DiscriminatorP, self).__init__()
        self.period = period
        self.use_spectral_norm = use_spectral_norm
        norm_f = weight_norm if use_spectral_norm == False else spectral_norm
        self.convs = nn.ModuleList([
            norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
            norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
            norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
            norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
            norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
        ])
        self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))

    def forward(self, x):
        fmap = []

        # 1d to 2d
        b, c, t = x.shape
        if t % self.period != 0: # pad first
            n_pad = self.period - (t % self.period)
            x = F.pad(x, (0, n_pad), "reflect")
            t = t + n_pad
        x = x.view(b, c, t // self.period, self.period)

        for l in self.convs:
            x = l(x)
            x = F.leaky_relu(x, modules.LRELU_SLOPE)
            fmap.append(x)
        x = self.conv_post(x)
        fmap.append(x)
        x = torch.flatten(x, 1, -1)

        return x, fmap


class DiscriminatorS(torch.nn.Module):
    def __init__(self, use_spectral_norm=False):
        super(DiscriminatorS, self).__init__()
        norm_f = weight_norm if use_spectral_norm == False else spectral_norm
        self.convs = nn.ModuleList([
            norm_f(Conv1d(1, 16, 15, 1, padding=7)),
            norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
            norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
            norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
            norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
            norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
        ])
        self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))

    def forward(self, x):
        fmap = []

        for l in self.convs:
            x = l(x)
            x = F.leaky_relu(x, modules.LRELU_SLOPE)
            fmap.append(x)
        x = self.conv_post(x)
        fmap.append(x)
        x = torch.flatten(x, 1, -1)

        return x, fmap


class MultiPeriodDiscriminator(torch.nn.Module):
    def __init__(self, use_spectral_norm=False):
        super(MultiPeriodDiscriminator, self).__init__()
        periods = [2,3,5,7,11]

        discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
        discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
        self.discriminators = nn.ModuleList(discs)

    def forward(self, y, y_hat):
        y_d_rs = []
        y_d_gs = []
        fmap_rs = []
        fmap_gs = []
        for i, d in enumerate(self.discriminators):
            y_d_r, fmap_r = d(y)
            y_d_g, fmap_g = d(y_hat)
            y_d_rs.append(y_d_r)
            y_d_gs.append(y_d_g)
            fmap_rs.append(fmap_r)
            fmap_gs.append(fmap_g)

        return y_d_rs, y_d_gs, fmap_rs, fmap_gs


class SpeakerEncoder(torch.nn.Module):
    def __init__(self, mel_n_channels=80, model_num_layers=3, model_hidden_size=256, model_embedding_size=256):
        super(SpeakerEncoder, self).__init__()
        self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True)
        self.linear = nn.Linear(model_hidden_size, model_embedding_size)
        self.relu = nn.ReLU()

    def forward(self, mels):
        self.lstm.flatten_parameters()
        _, (hidden, _) = self.lstm(mels)
        embeds_raw = self.relu(self.linear(hidden[-1]))
        return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)

    def compute_partial_slices(self, total_frames, partial_frames, partial_hop):
        mel_slices = []
        for i in range(0, total_frames-partial_frames, partial_hop):
            mel_range = torch.arange(i, i+partial_frames)
            mel_slices.append(mel_range)

        return mel_slices

    def embed_utterance(self, mel, partial_frames=128, partial_hop=64):
        mel_len = mel.size(1)
        last_mel = mel[:,-partial_frames:]

        if mel_len > partial_frames:
            mel_slices = self.compute_partial_slices(mel_len, partial_frames, partial_hop)
            mels = list(mel[:,s] for s in mel_slices)
            mels.append(last_mel)
            mels = torch.stack(tuple(mels), 0).squeeze(1)

            with torch.no_grad():
                partial_embeds = self(mels)
            embed = torch.mean(partial_embeds, axis=0).unsqueeze(0)
            #embed = embed / torch.linalg.norm(embed, 2)
        else:
            with torch.no_grad():
                embed = self(last_mel)

        return embed

class F0Decoder(nn.Module):
    def __init__(self,
                 out_channels,
                 hidden_channels,
                 filter_channels,
                 n_heads,
                 n_layers,
                 kernel_size,
                 p_dropout,
                 spk_channels=0):
        super().__init__()
        self.out_channels = out_channels
        self.hidden_channels = hidden_channels
        self.filter_channels = filter_channels
        self.n_heads = n_heads
        self.n_layers = n_layers
        self.kernel_size = kernel_size
        self.p_dropout = p_dropout
        self.spk_channels = spk_channels

        self.prenet = nn.Conv1d(hidden_channels, hidden_channels, 3, padding=1)
        self.decoder = attentions.FFT(
            hidden_channels,
            filter_channels,
            n_heads,
            n_layers,
            kernel_size,
            p_dropout)
        self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
        self.f0_prenet = nn.Conv1d(1, hidden_channels , 3, padding=1)
        self.cond = nn.Conv1d(spk_channels, hidden_channels, 1)

    def forward(self, x, norm_f0, x_mask, spk_emb=None):
        x = torch.detach(x)
        if (spk_emb is not None):
            x = x + self.cond(spk_emb)
        x += self.f0_prenet(norm_f0)
        x = self.prenet(x) * x_mask
        x = self.decoder(x * x_mask, x_mask)
        x = self.proj(x) * x_mask
        return x


class SynthesizerTrn(nn.Module):
  """
  Synthesizer for Training
  """

  def __init__(self,
    spec_channels,
    segment_size,
    inter_channels,
    hidden_channels,
    filter_channels,
    n_heads,
    n_layers,
    kernel_size,
    p_dropout,
    resblock,
    resblock_kernel_sizes,
    resblock_dilation_sizes,
    upsample_rates,
    upsample_initial_channel,
    upsample_kernel_sizes,
    gin_channels,
    ssl_dim,
    n_speakers,
    sampling_rate=44100,
    **kwargs):

    super().__init__()
    self.spec_channels = spec_channels
    self.inter_channels = inter_channels
    self.hidden_channels = hidden_channels
    self.filter_channels = filter_channels
    self.n_heads = n_heads
    self.n_layers = n_layers
    self.kernel_size = kernel_size
    self.p_dropout = p_dropout
    self.resblock = resblock
    self.resblock_kernel_sizes = resblock_kernel_sizes
    self.resblock_dilation_sizes = resblock_dilation_sizes
    self.upsample_rates = upsample_rates
    self.upsample_initial_channel = upsample_initial_channel
    self.upsample_kernel_sizes = upsample_kernel_sizes
    self.segment_size = segment_size
    self.gin_channels = gin_channels
    self.ssl_dim = ssl_dim
    self.emb_g = nn.Embedding(n_speakers, gin_channels)

    self.pre = nn.Conv1d(ssl_dim, hidden_channels, kernel_size=5, padding=2)

    self.enc_p = TextEncoder(
        inter_channels,
        hidden_channels,
        filter_channels=filter_channels,
        n_heads=n_heads,
        n_layers=n_layers,
        kernel_size=kernel_size,
        p_dropout=p_dropout
    )
    hps = {
        "sampling_rate": sampling_rate,
        "inter_channels": inter_channels,
        "resblock": resblock,
        "resblock_kernel_sizes": resblock_kernel_sizes,
        "resblock_dilation_sizes": resblock_dilation_sizes,
        "upsample_rates": upsample_rates,
        "upsample_initial_channel": upsample_initial_channel,
        "upsample_kernel_sizes": upsample_kernel_sizes,
        "gin_channels": gin_channels,
    }
    self.dec = Generator(h=hps)
    self.enc_q = Encoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
    self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
    self.f0_decoder = F0Decoder(
        1,
        hidden_channels,
        filter_channels,
        n_heads,
        n_layers,
        kernel_size,
        p_dropout,
        spk_channels=gin_channels
    )
    self.emb_uv = nn.Embedding(2, hidden_channels)

  def forward(self, c, f0, uv, spec, g=None, c_lengths=None, spec_lengths=None):
    g = self.emb_g(g).transpose(1,2)
    # ssl prenet
    x_mask = torch.unsqueeze(commons.sequence_mask(c_lengths, c.size(2)), 1).to(c.dtype)
    x = self.pre(c) * x_mask + self.emb_uv(uv.long()).transpose(1,2)

    # f0 predict
    lf0 = 2595. * torch.log10(1. + f0.unsqueeze(1) / 700.) / 500
    norm_lf0 = utils.normalize_f0(lf0, x_mask, uv)
    pred_lf0 = self.f0_decoder(x, norm_lf0, x_mask, spk_emb=g)

    # encoder
    z_ptemp, m_p, logs_p, _ = self.enc_p(x, x_mask, f0=f0_to_coarse(f0))
    z, m_q, logs_q, spec_mask = self.enc_q(spec, spec_lengths, g=g) 

    # flow
    z_p = self.flow(z, spec_mask, g=g)
    z_slice, pitch_slice, ids_slice = commons.rand_slice_segments_with_pitch(z, f0, spec_lengths, self.segment_size)

    # nsf decoder
    o = self.dec(z_slice, g=g, f0=pitch_slice)

    return o, ids_slice, spec_mask, (z, z_p, m_p, logs_p, m_q, logs_q), pred_lf0, norm_lf0, lf0

  def infer(self, c, f0, uv, g=None, noice_scale=0.35, predict_f0=False):
    c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
    g = self.emb_g(g).transpose(1,2)
    x_mask = torch.unsqueeze(commons.sequence_mask(c_lengths, c.size(2)), 1).to(c.dtype)
    x = self.pre(c) * x_mask + self.emb_uv(uv.long()).transpose(1,2)

    if predict_f0:
        lf0 = 2595. * torch.log10(1. + f0.unsqueeze(1) / 700.) / 500
        norm_lf0 = utils.normalize_f0(lf0, x_mask, uv, random_scale=False)
        pred_lf0 = self.f0_decoder(x, norm_lf0, x_mask, spk_emb=g)
        f0 = (700 * (torch.pow(10, pred_lf0 * 500 / 2595) - 1)).squeeze(1)

    z_p, m_p, logs_p, c_mask = self.enc_p(x, x_mask, f0=f0_to_coarse(f0), noice_scale=noice_scale)
    z = self.flow(z_p, c_mask, g=g, reverse=True)
    o = self.dec(z * c_mask, g=g, f0=f0)
    return o