Added fragments metric
Browse files- README.md +8 -1
- app.py +6 -0
- fragments.py +456 -0
- requirements.txt +12 -0
README.md
CHANGED
@@ -7,6 +7,13 @@ sdk: gradio
|
|
7 |
sdk_version: 3.40.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
-
|
|
|
7 |
sdk_version: 3.40.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
tags:
|
11 |
+
- evaluate
|
12 |
+
- metric
|
13 |
+
description: >-
|
14 |
+
Fragments computes the extractiveness between source articles and their summaries. The metric computes two scores: coverage and density.
|
15 |
+
The code is adapted from the newsroom package(https://github.com/lil-lab/newsroom/blob/master/newsroom/analyze/fragments.py).
|
16 |
+
All credits goes to the authors of aforementioned code.
|
17 |
---
|
18 |
|
19 |
+
|
app.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import evaluate
|
2 |
+
from evaluate.utils import launch_gradio_widget
|
3 |
+
|
4 |
+
|
5 |
+
module = evaluate.load("fragments", module_type="metric")
|
6 |
+
launch_gradio_widget(module)
|
fragments.py
ADDED
@@ -0,0 +1,456 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import statistics
|
2 |
+
|
3 |
+
import evaluate
|
4 |
+
import re
|
5 |
+
import html as _html
|
6 |
+
import itertools as _itertools
|
7 |
+
import random as _random
|
8 |
+
|
9 |
+
from collections import namedtuple as _namedtuple
|
10 |
+
|
11 |
+
import spacy as _spacy
|
12 |
+
from os import system as _system
|
13 |
+
|
14 |
+
_DESCRIPTION = """\ Fragments computes the extractiveness between source articles and summaries. The metric computes
|
15 |
+
two scores: coverage and density. The code is adapted from the newsroom package(
|
16 |
+
https://github.com/lil-lab/newsroom/blob/master/newsroom/analyze/fragments.py) and all credits goes to the authors of
|
17 |
+
said code."""
|
18 |
+
|
19 |
+
_KWARGS_DESCRIPTION = """
|
20 |
+
Computes coverage and density scores of source articles and their corresponding summaries.
|
21 |
+
Args:
|
22 |
+
articles (list of str): source articles of the summaries.
|
23 |
+
predictions (list of str): list of lists of or just a list of references for each translation.
|
24 |
+
language (str): string of which language to use, currently supported are only 'english' and 'german'. Defaults to 'german'
|
25 |
+
Returns:
|
26 |
+
'coverage': Coverage is the percentage of words in a summary that are from the source article
|
27 |
+
'density': Density is the average length of the text spans copied from the document that are contained in the summary.
|
28 |
+
Examples:
|
29 |
+
|
30 |
+
>>> articles = ["This is article 1", "This is article 2"]
|
31 |
+
>>> summaries = ["Summary of article 1", "Summary of article 2"]
|
32 |
+
>>> fragments = evaluate.load("fragments")
|
33 |
+
>>> results = fragments.compute(articles=articles, predictions=summaries)
|
34 |
+
>>> print(results["bleu"])
|
35 |
+
"""
|
36 |
+
|
37 |
+
|
38 |
+
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
39 |
+
class Fragments(evaluate.Metric):
|
40 |
+
def _info(self):
|
41 |
+
return evaluate.MetricInfo(
|
42 |
+
module_type="metric",
|
43 |
+
description=_DESCRIPTION,
|
44 |
+
citation=_CITATION,
|
45 |
+
inputs_description=_KWARGS_DESCRIPTION,
|
46 |
+
features=
|
47 |
+
datasets.Features(
|
48 |
+
{
|
49 |
+
"articles": datasets.Value("string", id="sequence"),
|
50 |
+
"predictions": datasets.Value("string", id="sequence"),
|
51 |
+
}
|
52 |
+
),
|
53 |
+
codebase_urls=["https://github.com/lil-lab/newsroom/blob/master/newsroom/analyze/fragments.py"]
|
54 |
+
)
|
55 |
+
|
56 |
+
def _compute(self, articles, predictions, language="german"):
|
57 |
+
coverages = []
|
58 |
+
densities = []
|
59 |
+
for article, summary in zip(articles, predictions):
|
60 |
+
fragments = FragmentsOriginal(article, summary, language=language)
|
61 |
+
coverages.append(fragments.coverage())
|
62 |
+
densities.append(fragments.density())
|
63 |
+
|
64 |
+
return {
|
65 |
+
'coverage': coverages,
|
66 |
+
'mean_coverage': statistics.mean(coverages),
|
67 |
+
'density': densities,
|
68 |
+
'mean_density': statistics.mean(density),
|
69 |
+
}
|
70 |
+
|
71 |
+
|
72 |
+
class FragmentsOriginal(object):
|
73 |
+
Match = _namedtuple("Match", ("summary", "text", "length"))
|
74 |
+
|
75 |
+
@classmethod
|
76 |
+
def _load_model(cls, language):
|
77 |
+
|
78 |
+
if language == 'english':
|
79 |
+
if not hasattr(cls, "_en"):
|
80 |
+
|
81 |
+
try:
|
82 |
+
|
83 |
+
cls._en = _spacy.load("en_core_web_sm")
|
84 |
+
|
85 |
+
except:
|
86 |
+
|
87 |
+
_system("python -m spacy download en_core_web_sm")
|
88 |
+
cls._en = _spacy.load("en_core_web_sm")
|
89 |
+
if language == 'german':
|
90 |
+
if not hasattr(cls, "_de"):
|
91 |
+
|
92 |
+
try:
|
93 |
+
|
94 |
+
cls._de = _spacy.load("de_core_news_sm")
|
95 |
+
|
96 |
+
except:
|
97 |
+
|
98 |
+
_system("python -m spacy download de_core_news_sm")
|
99 |
+
cls._de = _spacy.load("de_core_news_sm")
|
100 |
+
|
101 |
+
def __init__(self, text, summary, language="german", tokenize=True, case=False):
|
102 |
+
|
103 |
+
self._load_model(language)
|
104 |
+
|
105 |
+
self._tokens = tokenize
|
106 |
+
|
107 |
+
self.summary = self._tokenize(summary, language) if tokenize else summary.split()
|
108 |
+
self.text = self._tokenize(text, language) if tokenize else text.split()
|
109 |
+
|
110 |
+
self._norm_summary = self._normalize(self.summary, case)
|
111 |
+
self._norm_text = self._normalize(self.text, case)
|
112 |
+
|
113 |
+
self._match(self._norm_summary, self._norm_text)
|
114 |
+
|
115 |
+
def _tokenize(self, text, language):
|
116 |
+
|
117 |
+
"""
|
118 |
+
Tokenizes input using the fastest possible SpaCy configuration.
|
119 |
+
This is optional, can be disabled in constructor.
|
120 |
+
"""
|
121 |
+
|
122 |
+
if language == "english":
|
123 |
+
return self._en(text, disable=["tagger", "parser", "ner", "textcat"])
|
124 |
+
elif language == "german":
|
125 |
+
return self._de(text, disable=["tagger", "parser", "ner", "textcat"])
|
126 |
+
else:
|
127 |
+
return NotImplementedError
|
128 |
+
|
129 |
+
def _normalize(self, tokens, case=False):
|
130 |
+
|
131 |
+
"""
|
132 |
+
Lowercases and turns tokens into distinct words.
|
133 |
+
"""
|
134 |
+
|
135 |
+
return [
|
136 |
+
str(t).lower()
|
137 |
+
if not case
|
138 |
+
else str(t)
|
139 |
+
for t in tokens
|
140 |
+
]
|
141 |
+
|
142 |
+
def overlaps(self):
|
143 |
+
|
144 |
+
"""
|
145 |
+
Return a list of Fragments.Match objects between summary and text.
|
146 |
+
This is a list of named tuples of the form (summary, text, length):
|
147 |
+
- summary (int): the start index of the match in the summary
|
148 |
+
- text (int): the start index of the match in the reference
|
149 |
+
- length (int): the length of the extractive fragment
|
150 |
+
"""
|
151 |
+
|
152 |
+
return self._matches
|
153 |
+
|
154 |
+
def strings(self, min_length=0, raw=None, summary_base=True):
|
155 |
+
|
156 |
+
"""
|
157 |
+
Return a list of explicit match strings between the summary and reference.
|
158 |
+
Note that this will be in the same format as the strings are input. This is
|
159 |
+
important to remember if tokenization is done manually. If tokenization is
|
160 |
+
specified automatically on the raw strings, raw strings will automatically
|
161 |
+
be returned rather than SpaCy tokenized sequences.
|
162 |
+
Arguments:
|
163 |
+
- min_length (int): filter out overlaps shorter than this (default = 0)
|
164 |
+
- raw (bool): return raw input rather than stringified
|
165 |
+
- (default = False if automatic tokenization, True otherwise)
|
166 |
+
- summary_base (true): strings are based of summary text (default = True)
|
167 |
+
Returns:
|
168 |
+
- list of overlaps, where overlaps are strings or token sequences
|
169 |
+
"""
|
170 |
+
|
171 |
+
# Compute the strings against the summary or the text?
|
172 |
+
|
173 |
+
base = self.summary if summary_base else self.text
|
174 |
+
|
175 |
+
# Generate strings, filtering out strings below the minimum length.
|
176 |
+
|
177 |
+
strings = [
|
178 |
+
base[i: i + length]
|
179 |
+
for i, j, length
|
180 |
+
in self.overlaps()
|
181 |
+
if length > min_length
|
182 |
+
]
|
183 |
+
|
184 |
+
# By default, we just return the tokenization being used.
|
185 |
+
# But if they user wants a raw string, then we convert.
|
186 |
+
# Mostly, this will be used along with spacy.
|
187 |
+
|
188 |
+
if self._tokens and raw:
|
189 |
+
|
190 |
+
for i, s in enumerate(strings):
|
191 |
+
strings[i] = str(s)
|
192 |
+
|
193 |
+
# Return the list of strings.
|
194 |
+
|
195 |
+
return strings
|
196 |
+
|
197 |
+
def coverage(self, summary_base=True):
|
198 |
+
|
199 |
+
"""
|
200 |
+
Return the COVERAGE score of the summary and text.
|
201 |
+
Arguments:
|
202 |
+
- summary_base (bool): use summary as numerator (default = True)
|
203 |
+
Returns:
|
204 |
+
- decimal COVERAGE score within [0, 1]
|
205 |
+
"""
|
206 |
+
|
207 |
+
numerator = sum(o.length for o in self.overlaps())
|
208 |
+
|
209 |
+
if summary_base:
|
210 |
+
denominator = len(self.summary)
|
211 |
+
else:
|
212 |
+
denominator = len(self.reference)
|
213 |
+
|
214 |
+
if denominator == 0:
|
215 |
+
return 0
|
216 |
+
else:
|
217 |
+
return numerator / denominator
|
218 |
+
|
219 |
+
def density(self, summary_base=True):
|
220 |
+
|
221 |
+
"""
|
222 |
+
Return the DENSITY score of summary and text.
|
223 |
+
Arguments:
|
224 |
+
- summary_base (bool): use summary as numerator (default = True)
|
225 |
+
Returns:
|
226 |
+
- decimal DENSITY score within [0, ...]
|
227 |
+
"""
|
228 |
+
|
229 |
+
numerator = sum(o.length ** 2 for o in self.overlaps())
|
230 |
+
|
231 |
+
if summary_base:
|
232 |
+
denominator = len(self.summary)
|
233 |
+
else:
|
234 |
+
denominator = len(self.reference)
|
235 |
+
|
236 |
+
if denominator == 0:
|
237 |
+
return 0
|
238 |
+
else:
|
239 |
+
return numerator / denominator
|
240 |
+
|
241 |
+
def compression(self, text_to_summary=True):
|
242 |
+
|
243 |
+
"""
|
244 |
+
Return compression ratio between summary and text.
|
245 |
+
Arguments:
|
246 |
+
- text_to_summary (bool): compute text/summary ratio (default = True)
|
247 |
+
Returns:
|
248 |
+
- decimal compression score within [0, ...]
|
249 |
+
"""
|
250 |
+
|
251 |
+
ratio = [len(self.text), len(self.summary)]
|
252 |
+
|
253 |
+
try:
|
254 |
+
|
255 |
+
if text_to_summary:
|
256 |
+
return ratio[0] / ratio[1]
|
257 |
+
else:
|
258 |
+
return ratio[1] / ratio[0]
|
259 |
+
|
260 |
+
except ZeroDivisionError:
|
261 |
+
|
262 |
+
return 0
|
263 |
+
|
264 |
+
def _match(self, a, b):
|
265 |
+
|
266 |
+
"""
|
267 |
+
Raw procedure for matching summary in text, described in paper.
|
268 |
+
"""
|
269 |
+
|
270 |
+
self._matches = []
|
271 |
+
|
272 |
+
a_start = b_start = 0
|
273 |
+
|
274 |
+
while a_start < len(a):
|
275 |
+
|
276 |
+
best_match = None
|
277 |
+
best_match_length = 0
|
278 |
+
|
279 |
+
while b_start < len(b):
|
280 |
+
|
281 |
+
if a[a_start] == b[b_start]:
|
282 |
+
|
283 |
+
a_end = a_start
|
284 |
+
b_end = b_start
|
285 |
+
|
286 |
+
while a_end < len(a) and b_end < len(b) \
|
287 |
+
and b[b_end] == a[a_end]:
|
288 |
+
b_end += 1
|
289 |
+
a_end += 1
|
290 |
+
|
291 |
+
length = a_end - a_start
|
292 |
+
|
293 |
+
if length > best_match_length:
|
294 |
+
best_match = Fragments.Match(a_start, b_start, length)
|
295 |
+
best_match_length = length
|
296 |
+
|
297 |
+
b_start = b_end
|
298 |
+
|
299 |
+
else:
|
300 |
+
|
301 |
+
b_start += 1
|
302 |
+
|
303 |
+
b_start = 0
|
304 |
+
|
305 |
+
if best_match:
|
306 |
+
|
307 |
+
if best_match_length > 0:
|
308 |
+
self._matches.append(best_match)
|
309 |
+
|
310 |
+
a_start += best_match_length
|
311 |
+
|
312 |
+
else:
|
313 |
+
|
314 |
+
a_start += 1
|
315 |
+
|
316 |
+
def _htmltokens(self, tokens):
|
317 |
+
|
318 |
+
"""
|
319 |
+
Carefully process tokens to handle whitespace and HTML characters.
|
320 |
+
"""
|
321 |
+
|
322 |
+
return [
|
323 |
+
[
|
324 |
+
_html.escape(t.text).replace("\n", "<br/>"),
|
325 |
+
_html.escape(t.whitespace_).replace("\n", "<br/>")
|
326 |
+
]
|
327 |
+
|
328 |
+
for t in tokens
|
329 |
+
]
|
330 |
+
|
331 |
+
def annotate(self, min_length=0, text_truncation=None, novel_italics=False):
|
332 |
+
|
333 |
+
"""
|
334 |
+
Used to annotate fragments for website visualization.
|
335 |
+
Arguments:
|
336 |
+
- min_length (int): minimum length overlap to count (default = 0)
|
337 |
+
- text_truncation (int): tuncated text length (default = None)
|
338 |
+
- novel_italics (bool): italicize novel words (default = True)
|
339 |
+
Returns:
|
340 |
+
- a tuple of strings: (summary HTML, text HTML)
|
341 |
+
"""
|
342 |
+
|
343 |
+
start = """
|
344 |
+
<u
|
345 |
+
style="color: {color}; border-color: {color};"
|
346 |
+
data-ref="{ref}" title="Length: {length}"
|
347 |
+
>
|
348 |
+
""".strip()
|
349 |
+
|
350 |
+
end = """
|
351 |
+
</u>
|
352 |
+
""".strip()
|
353 |
+
|
354 |
+
# Here we tokenize carefully to preserve sane-looking whitespace.
|
355 |
+
# (This part does require text to use a SpaCy tokenization.)
|
356 |
+
|
357 |
+
summary = self._htmltokens(self.summary)
|
358 |
+
text = self._htmltokens(self.text)
|
359 |
+
|
360 |
+
# Compute novel word set, if requested.
|
361 |
+
|
362 |
+
if novel_italics:
|
363 |
+
|
364 |
+
novel = set(self._norm_summary) - set(self._norm_text)
|
365 |
+
|
366 |
+
for word_whitespace in summary:
|
367 |
+
|
368 |
+
if word_whitespace[0].lower() in novel:
|
369 |
+
word_whitespace[0] = "<em>" + word_whitespace[0] + "</em>"
|
370 |
+
|
371 |
+
# Truncate text, if requested.
|
372 |
+
# Must be careful later on with this.
|
373 |
+
|
374 |
+
if text_truncation is not None:
|
375 |
+
text = text[:text_truncation]
|
376 |
+
|
377 |
+
# March through overlaps, replacing tokens with HTML-tagged strings.
|
378 |
+
|
379 |
+
colors = self._itercolors()
|
380 |
+
|
381 |
+
for overlap in self.overlaps():
|
382 |
+
|
383 |
+
# Skip overlaps that are too short.
|
384 |
+
|
385 |
+
if overlap.length < min_length:
|
386 |
+
continue
|
387 |
+
|
388 |
+
# Reference ID for JavaScript highlighting.
|
389 |
+
# This is random, but shared between corresponding fragments.
|
390 |
+
|
391 |
+
ref = _random.randint(0, 1e10)
|
392 |
+
color = next(colors)
|
393 |
+
|
394 |
+
# Summary starting tag.
|
395 |
+
|
396 |
+
summary[overlap.summary][0] = start.format(
|
397 |
+
color=color,
|
398 |
+
ref=ref,
|
399 |
+
length=overlap.length,
|
400 |
+
) + summary[overlap.summary][0]
|
401 |
+
|
402 |
+
# Text starting tag.
|
403 |
+
|
404 |
+
text[overlap.text][0] = start.format(
|
405 |
+
color=color,
|
406 |
+
ref=ref,
|
407 |
+
length=overlap.length,
|
408 |
+
) + text[overlap.text][0]
|
409 |
+
|
410 |
+
# Summary ending tag.
|
411 |
+
|
412 |
+
summary[overlap.summary + overlap.length - 1][0] += end
|
413 |
+
|
414 |
+
# Text ending tag.
|
415 |
+
|
416 |
+
text[overlap.text + overlap.length - 1][0] += end
|
417 |
+
|
418 |
+
# Carefully join tokens and whitespace to reconstruct the string.
|
419 |
+
|
420 |
+
summary = " ".join("".join("".join(tw) for tw in summary).split())
|
421 |
+
text = " ".join("".join("".join(tw) for tw in text).split())
|
422 |
+
|
423 |
+
# Return the tuple.
|
424 |
+
|
425 |
+
return summary, text
|
426 |
+
|
427 |
+
def _itercolors(self):
|
428 |
+
|
429 |
+
# Endlessly cycle through these colors.
|
430 |
+
|
431 |
+
return _itertools.cycle((
|
432 |
+
|
433 |
+
"#393b79",
|
434 |
+
"#5254a3",
|
435 |
+
"#6b6ecf",
|
436 |
+
"#9c9ede",
|
437 |
+
"#637939",
|
438 |
+
"#8ca252",
|
439 |
+
"#b5cf6b",
|
440 |
+
"#cedb9c",
|
441 |
+
"#8c6d31",
|
442 |
+
"#bd9e39",
|
443 |
+
"#e7ba52",
|
444 |
+
"#e7cb94",
|
445 |
+
"#843c39",
|
446 |
+
"#ad494a",
|
447 |
+
"#d6616b",
|
448 |
+
"#e7969c",
|
449 |
+
"#7b4173",
|
450 |
+
"#a55194",
|
451 |
+
"#ce6dbd",
|
452 |
+
"#de9ed6",
|
453 |
+
|
454 |
+
))
|
455 |
+
|
456 |
+
################################################################################
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Fragments
|
3 |
+
emoji: 🌍
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: red
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.40.1
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
---
|
11 |
+
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|