# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from transformers.utils import is_flash_attn_2_available, is_torch_sdpa_available from ...extras.logging import get_logger if TYPE_CHECKING: from transformers import PretrainedConfig from ...hparams import ModelArguments logger = get_logger(__name__) def configure_attn_implementation( config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool ) -> None: if getattr(config, "model_type", None) == "gemma2" and is_trainable: # gemma2 adopts soft-cap attention if model_args.flash_attn == "auto": logger.warning("Gemma-2 models should use eager attention in training, change `flash_attn` to disabled.") model_args.flash_attn = "disabled" elif model_args.flash_attn != "disabled": logger.warning( "Gemma-2 models should use eager attention in training, but you set `flash_attn: {}`. " "Will proceed at your own risk.".format(model_args.flash_attn) ) if model_args.flash_attn == "auto": return elif model_args.flash_attn == "disabled": requested_attn_implementation = "eager" elif model_args.flash_attn == "sdpa": if not is_torch_sdpa_available(): logger.warning("torch>=2.1.1 is required for SDPA attention.") return requested_attn_implementation = "sdpa" elif model_args.flash_attn == "fa2": if not is_flash_attn_2_available(): logger.warning("FlashAttention-2 is not installed.") return requested_attn_implementation = "flash_attention_2" else: raise NotImplementedError("Unknown attention type: {}".format(model_args.flash_attn)) if getattr(config, "model_type", None) == "internlm2": # special case for custom models setattr(config, "attn_implementation", requested_attn_implementation) else: setattr(config, "_attn_implementation", requested_attn_implementation) def print_attn_implementation(config: "PretrainedConfig") -> None: if getattr(config, "model_type", None) == "internlm2": # special case for custom models attn_implementation = getattr(config, "attn_implementation", None) else: attn_implementation = getattr(config, "_attn_implementation", None) if attn_implementation == "flash_attention_2": logger.info("Using FlashAttention-2 for faster training and inference.") elif attn_implementation == "sdpa": logger.info("Using torch SDPA for faster training and inference.") else: logger.info("Using vanilla attention implementation.")