File size: 2,966 Bytes
13362e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# Adapted from: https://github.com/binghong-ml/retro_star

import numpy as np
import logging

class MolNode:
    def __init__(self, mol, init_value, parent=None, is_known=False,
                 zero_known_value=True):
        self.mol = mol
        self.pred_value = init_value
        self.value = init_value
        self.succ_value = np.inf    # total cost for existing solution
        self.parent = parent

        self.id = -1
        if self.parent is None:
            self.depth = 0
        else:
            self.depth = self.parent.depth

        self.is_known = is_known
        self.children = []
        self.succ = is_known
        self.open = True    # before expansion: True, after expansion: False
        if is_known:
            self.open = False
            if zero_known_value:
                self.value = 0
            self.succ_value = self.value

        if parent is not None:
            parent.children.append(self)

    def v_self(self):
        """
        :return: V_self(self | subtree)
        """
        return self.value

    def v_target(self):
        """
        :return: V_target(self | whole tree)
        """
        if self.parent is None:
            return self.value
        else:
            return self.parent.v_target()

    def init_values(self, no_child=False):
        assert self.open and (no_child or self.children)

        new_value = np.inf
        self.succ = False
        for reaction in self.children:
            new_value = np.min((new_value, reaction.v_self()))
            self.succ |= reaction.succ

        v_delta = new_value - self.value
        self.value = new_value

        if self.succ:
            for reaction in self.children:
                self.succ_value = np.min((self.succ_value,
                                          reaction.succ_value))

        self.open = False

        return v_delta

    def backup(self, succ):
        assert not self.is_known

        new_value = np.inf
        for reaction in self.children:
            new_value = np.min((new_value, reaction.v_self()))
        new_succ = self.succ | succ
        updated = (self.value != new_value) or (self.succ != new_succ)

        new_succ_value = np.inf
        if new_succ:
            for reaction in self.children:
                new_succ_value = np.min((new_succ_value, reaction.succ_value))
            updated = updated or (self.succ_value != new_succ_value)

        v_delta = new_value - self.value
        self.value = new_value
        self.succ = new_succ
        self.succ_value = new_succ_value

        if updated and self.parent:
            return self.parent.backup(v_delta, from_mol=self.mol)

    def serialize(self):
        text = '%d | %s' % (self.id, self.mol)
        return text

    def get_ancestors(self):
        if self.parent is None:
            return {self.mol}

        ancestors = self.parent.parent.get_ancestors()
        ancestors.add(self.mol)
        return ancestors