import evaluate from evaluate.utils import launch_gradio_widget import evaluate from evaluate.utils import launch_gradio_widget import gradio as gr # Define the list of available models available_models = { "unitary/toxic-bert": "Bert Base Model", "facebook/roberta-hate-speech-dynabench-r4-target": "Facebook Model", "mskov/roberta-base-toxicity": "Roberta Finetuned Model", "mskov/distilbert-base-toxicity" : "Distillbert Finetuned Model" } # Create a Gradio interface with a radio button to select the model def classify_toxicity(text, selected_model): # Load the selected model module = evaluate.load("toxicity", selected_model) results = module.compute(predictions=[text]) toxicity_score = results["toxicity"][0] return f"Toxicity Score ({available_models[selected_model]}): {toxicity_score:.4f}" iface = gr.Interface( fn=classify_toxicity, inputs=["text", gr.Radio(available_models, type="value", label="Select Model")], outputs="text", live=True, title="Toxicity Classifier", description="Select a model and enter text to classify its toxicity.", ) launch_gradio_widget(iface)