mskov commited on
Commit
bcd2334
·
1 Parent(s): 5108b8d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -9
app.py CHANGED
@@ -116,9 +116,11 @@ def classify_toxicity(audio_file, text_input, classify_anxiety, emo_class, expli
116
  # plot.update(x=classification_df["labels"], y=classification_df["scores"])
117
  if toxicity_score > threshold:
118
  print("threshold exceeded!! Launch intervention")
119
- intervention_output(intervention)
 
 
120
 
121
- return toxicity_score, classification_output, transcribed_text
122
  # return f"Toxicity Score ({available_models[selected_model]}): {toxicity_score:.4f}"
123
  else:
124
  threshold = slider_logic(slider)
@@ -156,16 +158,17 @@ def classify_toxicity(audio_file, text_input, classify_anxiety, emo_class, expli
156
  print("threshold exceeded!! Launch intervention")
157
  return classify_anxiety
158
  def intervention_output(intervene):
159
- if intervene== "Audio File":
160
- out_aud : gr.update(value="calm.wav", visible=True, autoplay=True)
161
  print("audio updated")
 
162
  elif intervene == "Therapy App":
163
- out_img : gr.update(visible=True, value="hrv-breathing.gif")
 
164
  elif intervene == "Text Message":
165
  phrase = positive_affirmations()
166
- out_text : gr.update(visible=True, value=phrase)
167
  else:
168
- pass
169
 
170
  def positive_affirmations():
171
  affirmations = [
@@ -192,9 +195,10 @@ with gr.Blocks() as iface:
192
  with gr.Column():
193
  out_val = gr.Textbox()
194
  out_class = gr.Textbox()
 
195
  out_text = gr.Textbox(visible=False)
196
- out_img = gr.Textbox(visible=False)
197
  out_aud = gr.Audio(value="calm.wav", visible=False)
198
- submit_btn.click(fn=classify_toxicity, inputs=[aud_input, text, anxiety_class, emo_class, explit_preference, sense_slider, intervention_type], outputs=[out_val, out_class, out_text])
199
 
200
  iface.launch()
 
116
  # plot.update(x=classification_df["labels"], y=classification_df["scores"])
117
  if toxicity_score > threshold:
118
  print("threshold exceeded!! Launch intervention")
119
+ intervene = intervention_output(intervention)
120
+ else:
121
+ intervene = " "
122
 
123
+ return toxicity_score, classification_output, transcribed_text, intervene
124
  # return f"Toxicity Score ({available_models[selected_model]}): {toxicity_score:.4f}"
125
  else:
126
  threshold = slider_logic(slider)
 
158
  print("threshold exceeded!! Launch intervention")
159
  return classify_anxiety
160
  def intervention_output(intervene):
161
+ if intervene == "Audio File":
 
162
  print("audio updated")
163
+ return { out_aud : gr.update(value="calm.wav", visible=True, autoplay=True) }
164
  elif intervene == "Therapy App":
165
+ print("therapy app updated")
166
+ return { out_img : gr.update(value="hrv-breathing.gif", visible=True)}
167
  elif intervene == "Text Message":
168
  phrase = positive_affirmations()
169
+ return { out_text : gr.update(visible=True, value=phrase) }
170
  else:
171
+ return " "
172
 
173
  def positive_affirmations():
174
  affirmations = [
 
195
  with gr.Column():
196
  out_val = gr.Textbox()
197
  out_class = gr.Textbox()
198
+ # with gr.Column(visible=False) as output_col:
199
  out_text = gr.Textbox(visible=False)
200
+ out_img = gr.Image(value="hrv-breathing.gif", visible=False)
201
  out_aud = gr.Audio(value="calm.wav", visible=False)
202
+ submit_btn.click(fn=classify_toxicity, inputs=[aud_input, text, anxiety_class, emo_class, explit_preference, sense_slider, intervention_type], outputs=[out_val, out_class, out_text, out_text])
203
 
204
  iface.launch()