Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -116,11 +116,10 @@ def classify_toxicity(audio_file, text_input, classify_anxiety, emo_class, expli
|
|
116 |
# plot.update(x=classification_df["labels"], y=classification_df["scores"])
|
117 |
if toxicity_score > threshold:
|
118 |
print("threshold exceeded!! Launch intervention")
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
return toxicity_score, classification_output, transcribed_text, output_col
|
124 |
# return f"Toxicity Score ({available_models[selected_model]}): {toxicity_score:.4f}"
|
125 |
else:
|
126 |
threshold = slider_logic(slider)
|
@@ -197,9 +196,9 @@ with gr.Blocks() as iface:
|
|
197 |
out_val = gr.Textbox()
|
198 |
out_class = gr.Textbox()
|
199 |
with gr.Column(visible=False) as output_col:
|
200 |
-
out_text = gr.Textbox(
|
201 |
-
out_img = gr.Image(value="hrv-breathing.gif"
|
202 |
-
out_aud = gr.Audio(value="calm.wav"
|
203 |
submit_btn.click(fn=classify_toxicity, inputs=[aud_input, text, anxiety_class, emo_class, explit_preference, sense_slider, intervention_type], outputs=[out_val, out_class, out_text, output_col])
|
204 |
|
205 |
iface.launch()
|
|
|
116 |
# plot.update(x=classification_df["labels"], y=classification_df["scores"])
|
117 |
if toxicity_score > threshold:
|
118 |
print("threshold exceeded!! Launch intervention")
|
119 |
+
holder = intervention_output(intervention)
|
120 |
+
|
121 |
+
print("output column: ", holder)
|
122 |
+
return toxicity_score, classification_output, transcribed_text, holder
|
|
|
123 |
# return f"Toxicity Score ({available_models[selected_model]}): {toxicity_score:.4f}"
|
124 |
else:
|
125 |
threshold = slider_logic(slider)
|
|
|
196 |
out_val = gr.Textbox()
|
197 |
out_class = gr.Textbox()
|
198 |
with gr.Column(visible=False) as output_col:
|
199 |
+
out_text = gr.Textbox()
|
200 |
+
out_img = gr.Image(value="hrv-breathing.gif")
|
201 |
+
out_aud = gr.Audio(value="calm.wav")
|
202 |
submit_btn.click(fn=classify_toxicity, inputs=[aud_input, text, anxiety_class, emo_class, explit_preference, sense_slider, intervention_type], outputs=[out_val, out_class, out_text, output_col])
|
203 |
|
204 |
iface.launch()
|