Spaces:
Runtime error
Runtime error
Upload classify (2).py
Browse files- classify (2).py +66 -0
classify (2).py
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Optional
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
from whisper.audio import N_FRAMES, N_MELS, log_mel_spectrogram, pad_or_trim
|
| 6 |
+
from whisper.model import Whisper
|
| 7 |
+
from whisper.tokenizer import Tokenizer
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
@torch.no_grad()
|
| 11 |
+
def calculate_audio_features(audio_path: Optional[str], model: Whisper) -> torch.Tensor:
|
| 12 |
+
if audio_path is None:
|
| 13 |
+
segment = torch.zeros((N_MELS, N_FRAMES), dtype=torch.float32).to(model.device)
|
| 14 |
+
else:
|
| 15 |
+
mel = log_mel_spectrogram(audio_path)
|
| 16 |
+
segment = pad_or_trim(mel, N_FRAMES).to(model.device)
|
| 17 |
+
return model.embed_audio(segment.unsqueeze(0))
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
@torch.no_grad()
|
| 21 |
+
def calculate_average_logprobs(
|
| 22 |
+
model: Whisper,
|
| 23 |
+
audio_features: torch.Tensor,
|
| 24 |
+
class_names: List[str],
|
| 25 |
+
tokenizer: Tokenizer,
|
| 26 |
+
) -> torch.Tensor:
|
| 27 |
+
initial_tokens = (
|
| 28 |
+
torch.tensor(tokenizer.sot_sequence_including_notimestamps).unsqueeze(0).to(model.device)
|
| 29 |
+
)
|
| 30 |
+
eot_token = torch.tensor([tokenizer.eot]).unsqueeze(0).to(model.device)
|
| 31 |
+
|
| 32 |
+
average_logprobs = torch.zeros(len(class_names))
|
| 33 |
+
for i, class_name in enumerate(class_names):
|
| 34 |
+
class_name_tokens = (
|
| 35 |
+
torch.tensor(tokenizer.encode(" " + class_name)).unsqueeze(0).to(model.device)
|
| 36 |
+
)
|
| 37 |
+
input_tokens = torch.cat([initial_tokens, class_name_tokens, eot_token], dim=1)
|
| 38 |
+
|
| 39 |
+
logits = model.logits(input_tokens, audio_features) # (1, T, V)
|
| 40 |
+
logprobs = F.log_softmax(logits, dim=-1).squeeze(0) # (T, V)
|
| 41 |
+
logprobs = logprobs[len(tokenizer.sot_sequence_including_notimestamps) - 1 : -1] # (T', V)
|
| 42 |
+
logprobs = torch.gather(logprobs, dim=-1, index=class_name_tokens.view(-1, 1)) # (T', 1)
|
| 43 |
+
average_logprob = logprobs.mean().item()
|
| 44 |
+
average_logprobs[i] = average_logprob
|
| 45 |
+
|
| 46 |
+
return average_logprobs
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def calculate_internal_lm_average_logprobs(
|
| 50 |
+
model: Whisper,
|
| 51 |
+
class_names: List[str],
|
| 52 |
+
tokenizer: Tokenizer,
|
| 53 |
+
verbose: bool = False,
|
| 54 |
+
) -> torch.Tensor:
|
| 55 |
+
audio_features_from_empty_input = calculate_audio_features(None, model)
|
| 56 |
+
average_logprobs = calculate_average_logprobs(
|
| 57 |
+
model=model,
|
| 58 |
+
audio_features=audio_features_from_empty_input,
|
| 59 |
+
class_names=class_names,
|
| 60 |
+
tokenizer=tokenizer,
|
| 61 |
+
)
|
| 62 |
+
if verbose:
|
| 63 |
+
print("Internal LM average log probabilities for each class:")
|
| 64 |
+
for i, class_name in enumerate(class_names):
|
| 65 |
+
print(f" {class_name}: {average_logprobs[i]:.3f}")
|
| 66 |
+
return average_logprobs
|