mskov commited on
Commit
52d8361
·
1 Parent(s): b14f43e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -29,8 +29,8 @@ class_options = {
29
  }
30
 
31
  pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large")
32
-
33
-
34
 
35
  def slider_logic(slider):
36
  threshold = 0
@@ -54,7 +54,7 @@ def classify_toxicity(audio_file, selected_sounds, slider):
54
  # transcribed_text = pipe(audio_file)["text"]
55
 
56
  threshold = slider_logic(slider)
57
- model = whisper.load_model("large")
58
  # model = model_cache[model_name]
59
  # class_names = classify_anxiety.split(",")
60
  classify_anxiety = "misophonia"
@@ -66,7 +66,7 @@ def classify_toxicity(audio_file, selected_sounds, slider):
66
  class_names = class_str.split(",")
67
  print("class names ", class_names, "classify_anxiety ", classify_anxiety)
68
 
69
- tokenizer = get_tokenizer("large")
70
  # tokenizer= WhisperTokenizer.from_pretrained("openai/whisper-large")
71
 
72
  internal_lm_average_logprobs = classify.calculate_internal_lm_average_logprobs(
@@ -99,7 +99,7 @@ def classify_toxicity(audio_file, selected_sounds, slider):
99
  highest_float = float(highest_score)
100
 
101
  if highest_score is not None and highest_float > threshold:
102
- affirm = "Threshold Exceeded"
103
  else:
104
  affirm = " "
105
 
 
29
  }
30
 
31
  pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large")
32
+ model = whisper.load_model("large")
33
+ tokenizer = get_tokenizer("large")
34
 
35
  def slider_logic(slider):
36
  threshold = 0
 
54
  # transcribed_text = pipe(audio_file)["text"]
55
 
56
  threshold = slider_logic(slider)
57
+ # MODEL LINE model = whisper.load_model("large")
58
  # model = model_cache[model_name]
59
  # class_names = classify_anxiety.split(",")
60
  classify_anxiety = "misophonia"
 
66
  class_names = class_str.split(",")
67
  print("class names ", class_names, "classify_anxiety ", classify_anxiety)
68
 
69
+ # TOKENIZER LINE tokenizer = get_tokenizer("large")
70
  # tokenizer= WhisperTokenizer.from_pretrained("openai/whisper-large")
71
 
72
  internal_lm_average_logprobs = classify.calculate_internal_lm_average_logprobs(
 
99
  highest_float = float(highest_score)
100
 
101
  if highest_score is not None and highest_float > threshold:
102
+ affirm = "Threshold Exceeded, initiate intervention"
103
  else:
104
  affirm = " "
105