Spaces:
Build error
Build error
mshukor
commited on
Commit
·
0173bf0
1
Parent(s):
33f1db4
fix
Browse files
app.py
CHANGED
@@ -50,20 +50,17 @@ device_type = 'cuda' if use_cuda else 'cpu'
|
|
50 |
## Load model
|
51 |
|
52 |
### Captioning
|
53 |
-
config = 'configs/
|
54 |
-
# config = yaml.load(open(config, 'r'), Loader=yaml.Loader)
|
55 |
config = yaml.load(open(config, 'r'))
|
56 |
|
57 |
text_model = 'facebook/opt-2.7b'
|
58 |
vision_model_name = 'vit_base_patch16_224'
|
59 |
|
60 |
-
# text_model = 'facebook/opt-6.7b'
|
61 |
-
# vision_model_name = 'vit_large_patch16_224'
|
62 |
|
63 |
start_layer_idx = 19
|
64 |
end_layer_idx = 31
|
65 |
low_cpu = True
|
66 |
-
|
67 |
vision_model_name=vision_model_name,
|
68 |
use_vis_prefix=True,
|
69 |
start_layer_idx=start_layer_idx,
|
@@ -73,62 +70,20 @@ model = ePALM(opt_model_name=text_model,
|
|
73 |
low_cpu=low_cpu
|
74 |
)
|
75 |
print("Model Built")
|
76 |
-
|
77 |
|
78 |
checkpoint_path = 'checkpoints/float32/ePALM_caption/checkpoint_best.pth'
|
79 |
-
# checkpoint_path = '/data/mshukor/logs/eplam/models/accelerate/ePALM_pt_L_acc_caption/checkpoint_best.pth'
|
80 |
checkpoint = torch.load(checkpoint_path, map_location='cpu')
|
81 |
state_dict = checkpoint['model']
|
82 |
-
msg =
|
83 |
-
|
84 |
-
model.bfloat16()
|
85 |
-
|
86 |
-
# ###### VQA
|
87 |
-
# config = 'configs/image/ePALM_vqa.yaml'
|
88 |
-
# config = yaml.load(open(config, 'r'))
|
89 |
-
|
90 |
-
# start_layer_idx = 19
|
91 |
-
# end_layer_idx = 31
|
92 |
-
# low_cpu = True
|
93 |
-
# model_vqa = ePALM(opt_model_name=text_model,
|
94 |
-
# vision_model_name=vision_model_name,
|
95 |
-
# use_vis_prefix=True,
|
96 |
-
# start_layer_idx=start_layer_idx,
|
97 |
-
# end_layer_idx=end_layer_idx,
|
98 |
-
# return_hidden_state_vision=True,
|
99 |
-
# config=config,
|
100 |
-
# low_cpu=low_cpu
|
101 |
-
# )
|
102 |
-
# print("Model Built")
|
103 |
-
# model_vqa.to(device)
|
104 |
-
|
105 |
-
|
106 |
-
checkpoint_path = 'checkpoints/float32/ePALM_vqa/checkpoint_best.pth'
|
107 |
-
checkpoint = torch.load(checkpoint_path, map_location='cpu')
|
108 |
-
state_dict_vqa = checkpoint['model']
|
109 |
-
# msg = model_vqa.load_state_dict(state_dict,strict=False)
|
110 |
-
|
111 |
|
112 |
-
|
113 |
|
114 |
|
115 |
|
116 |
-
# Video Captioning
|
117 |
-
checkpoint_path = 'checkpoints/float32/ePALM_video_caption_msrvtt/checkpoint_best.pth'
|
118 |
-
# checkpoint_path = '/data/mshukor/logs/eplam/models/accelerate/ePALM_pt_L_acc_caption/checkpoint_best.pth'
|
119 |
-
checkpoint = torch.load(checkpoint_path, map_location='cpu')
|
120 |
-
state_dict_video_caption = checkpoint['model']
|
121 |
-
|
122 |
-
# Video QA
|
123 |
-
checkpoint_path = 'checkpoints/float32/ePALM_video_qa_msrvtt/checkpoint_best.pth'
|
124 |
-
# checkpoint_path = '/data/mshukor/logs/eplam/models/accelerate/ePALM_pt_L_acc_caption/checkpoint_best.pth'
|
125 |
-
checkpoint = torch.load(checkpoint_path, map_location='cpu')
|
126 |
-
state_dict_video_qa = checkpoint['model']
|
127 |
-
|
128 |
|
129 |
# Audio Captioning
|
130 |
checkpoint_path = 'checkpoints/float32/ePALM_audio_caption/checkpoint_best.pth'
|
131 |
-
# checkpoint_path = '/data/mshukor/logs/eplam/models/accelerate/ePALM_pt_L_acc_caption/checkpoint_best.pth'
|
132 |
checkpoint = torch.load(checkpoint_path, map_location='cpu')
|
133 |
state_dict_audio_caption = checkpoint['model']
|
134 |
|
@@ -146,33 +101,8 @@ special_tokens_dict = {'additional_special_tokens': [special_answer_token]}
|
|
146 |
tokenizer.add_special_tokens(special_tokens_dict)
|
147 |
|
148 |
|
149 |
-
image_size = 224
|
150 |
-
normalize = transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
151 |
-
|
152 |
-
transform = transforms.Compose([
|
153 |
-
transforms.Resize((image_size,image_size),interpolation=Image.BICUBIC),
|
154 |
-
transforms.ToTensor(),
|
155 |
-
normalize,
|
156 |
-
])
|
157 |
|
158 |
-
type_transform = transforms.Lambda(lambda x: x.float().div(255.0))
|
159 |
-
test_transform = transforms.Compose([
|
160 |
-
transforms.Resize((image_size,image_size),interpolation=Image.BICUBIC),
|
161 |
-
type_transform,
|
162 |
-
normalize,
|
163 |
-
])
|
164 |
-
from dataset.video_utils import VIDEO_READER_FUNCS
|
165 |
-
video_reader = VIDEO_READER_FUNCS['decord']
|
166 |
-
|
167 |
-
def read_video(path, num_frames=16):
|
168 |
-
|
169 |
|
170 |
-
frames, frame_indices, video_duration = video_reader(
|
171 |
-
path, num_frames, 'rand', max_num_frames=-1
|
172 |
-
)
|
173 |
-
video = test_transform(frames)
|
174 |
-
|
175 |
-
return video
|
176 |
|
177 |
def read_audio(path):
|
178 |
|
@@ -237,37 +167,18 @@ max_length=30
|
|
237 |
|
238 |
|
239 |
|
240 |
-
def inference(image,
|
241 |
|
242 |
-
if task_type == '
|
243 |
-
text = ['']
|
244 |
-
text_input = tokenizer(text, padding='longest', return_tensors="pt").to(device)
|
245 |
-
elif task_type == 'Video Captioning':
|
246 |
-
text = ['']
|
247 |
-
text_input = tokenizer(text, padding='longest', return_tensors="pt").to(device)
|
248 |
-
model = model.load_state_dict(state_dict_video_caption,strict=False)
|
249 |
-
elif task_type == 'Audio Captioning':
|
250 |
text = ['']
|
251 |
text_input = tokenizer(text, padding='longest', return_tensors="pt").to(device)
|
252 |
-
model =
|
253 |
-
elif task_type == 'Visual Question Answering':
|
254 |
-
question = instruction+'?'+special_answer_token
|
255 |
-
text_input = tokenizer(question, padding='longest', return_tensors="pt").to(device)
|
256 |
-
model = model.load_state_dict(state_dict_vqa,strict=False)
|
257 |
-
elif task_type == 'Visual Question Answering':
|
258 |
-
question = instruction+'?'+special_answer_token
|
259 |
-
text_input = tokenizer(question, padding='longest', return_tensors="pt").to(device)
|
260 |
-
model = model.load_state_dict(state_dict_video_qa,strict=False)
|
261 |
else:
|
262 |
raise NotImplemented
|
263 |
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
image = read_audio(image)
|
268 |
-
else:
|
269 |
-
image = transform(image)
|
270 |
-
image = image.to(device,non_blocking=True).unsqueeze(0)
|
271 |
|
272 |
|
273 |
|
@@ -290,25 +201,15 @@ def inference(image, audio, video, task_type, instruction):
|
|
290 |
return response
|
291 |
|
292 |
|
293 |
-
inputs = [gr.
|
294 |
outputs = ['text']
|
295 |
examples = [
|
296 |
-
['examples/
|
297 |
-
['examples/
|
298 |
-
['examples/images/banana.jpg', None, None, 'Image Captioning', None],
|
299 |
-
['examples/images/skateboard.jpg', None, None, 'Visual Question Answering', 'what is on top of the skateboard?'],
|
300 |
-
['examples/images/baseball.jpg', None, None, 'Image Captioning', None],
|
301 |
-
[None, None, 'examples/videos/video7014.mp4', 'Video Captioning', None],
|
302 |
-
[None, None, 'examples/videos/video7017.mp4', 'Video Captioning', None],
|
303 |
-
[None, None, 'examples/videos/video7019.mp4', 'Video Captioning', None],
|
304 |
-
[None, None, 'examples/videos/video7021.mp4', 'Video Captioning', None],
|
305 |
-
[None, None, 'examples/videos/video7021.mp4', 'Video Captioning', None],
|
306 |
-
[None, 'examples/audios/6cS0FsUM-cQ.wav', None, 'Audio Captioning', None],
|
307 |
-
[None, 'examples/audios/AJtNitYMa1I.wav', None, 'Audio Captioning', None],
|
308 |
]
|
309 |
|
310 |
-
title = "eP-ALM"
|
311 |
-
description = "Gradio Demo for eP-ALM
|
312 |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2303.11403' target='_blank'>Paper</a> | <a href='https://github.com/mshukor/eP-ALM' target='_blank'>Github Repo</a></p>"
|
313 |
|
314 |
io = gr.Interface(fn=inference, inputs=inputs, outputs=outputs,
|
|
|
50 |
## Load model
|
51 |
|
52 |
### Captioning
|
53 |
+
config = 'configs/audio/ePALM_audio_caption.yaml'
|
|
|
54 |
config = yaml.load(open(config, 'r'))
|
55 |
|
56 |
text_model = 'facebook/opt-2.7b'
|
57 |
vision_model_name = 'vit_base_patch16_224'
|
58 |
|
|
|
|
|
59 |
|
60 |
start_layer_idx = 19
|
61 |
end_layer_idx = 31
|
62 |
low_cpu = True
|
63 |
+
MODEL = ePALM(opt_model_name=text_model,
|
64 |
vision_model_name=vision_model_name,
|
65 |
use_vis_prefix=True,
|
66 |
start_layer_idx=start_layer_idx,
|
|
|
70 |
low_cpu=low_cpu
|
71 |
)
|
72 |
print("Model Built")
|
73 |
+
MODEL.to(device)
|
74 |
|
75 |
checkpoint_path = 'checkpoints/float32/ePALM_caption/checkpoint_best.pth'
|
|
|
76 |
checkpoint = torch.load(checkpoint_path, map_location='cpu')
|
77 |
state_dict = checkpoint['model']
|
78 |
+
msg = MODEL.load_state_dict(state_dict,strict=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
MODEL.bfloat16()
|
81 |
|
82 |
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
# Audio Captioning
|
86 |
checkpoint_path = 'checkpoints/float32/ePALM_audio_caption/checkpoint_best.pth'
|
|
|
87 |
checkpoint = torch.load(checkpoint_path, map_location='cpu')
|
88 |
state_dict_audio_caption = checkpoint['model']
|
89 |
|
|
|
101 |
tokenizer.add_special_tokens(special_tokens_dict)
|
102 |
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
def read_audio(path):
|
108 |
|
|
|
167 |
|
168 |
|
169 |
|
170 |
+
def inference(image, task_type):
|
171 |
|
172 |
+
if task_type == 'Audio Captioning':
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
text = ['']
|
174 |
text_input = tokenizer(text, padding='longest', return_tensors="pt").to(device)
|
175 |
+
model = MODEL
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
else:
|
177 |
raise NotImplemented
|
178 |
|
179 |
+
|
180 |
+
image = read_audio(image)
|
181 |
+
|
|
|
|
|
|
|
|
|
182 |
|
183 |
|
184 |
|
|
|
201 |
return response
|
202 |
|
203 |
|
204 |
+
inputs = [gr.Audio(source="upload", type="filepath"), gr.inputs.Radio(choices=['Audio Captioning'], type="value", default="Image Captioning", label="Task")]
|
205 |
outputs = ['text']
|
206 |
examples = [
|
207 |
+
['examples/audios/6cS0FsUM-cQ.wav', 'Audio Captioning', None],
|
208 |
+
['examples/audios/AJtNitYMa1I.wav', 'Audio Captioning', None],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
]
|
210 |
|
211 |
+
title = "eP-ALM for Audio-Text tasks"
|
212 |
+
description = "Gradio Demo for eP-ALM. For this demo, we use 2.7B OPT. As the model runs on CPUs and float16 mixed precision is not supported on CPUs, the generation can take up to 2 mins."
|
213 |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2303.11403' target='_blank'>Paper</a> | <a href='https://github.com/mshukor/eP-ALM' target='_blank'>Github Repo</a></p>"
|
214 |
|
215 |
io = gr.Interface(fn=inference, inputs=inputs, outputs=outputs,
|