Spaces:
Build error
Build error
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. | |
# Copyright 2020 Ross Wightman | |
# Modified Model definition | |
import torch | |
import torch.nn as nn | |
from functools import partial | |
import math | |
import warnings | |
import torch.nn.functional as F | |
import numpy as np | |
from timesformer.models.vit_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
from timesformer.models.helpers import load_pretrained | |
from timesformer.models.vit_utils import DropPath, to_2tuple, trunc_normal_ | |
# from timesformer.models.build import MODEL_REGISTRY | |
from torch import einsum | |
from einops import rearrange, reduce, repeat | |
import torchvision | |
def _cfg(url='', **kwargs): | |
return { | |
'url': url, | |
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, | |
'crop_pct': .9, 'interpolation': 'bicubic', | |
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, | |
'first_conv': 'patch_embed.proj', 'classifier': 'head', | |
**kwargs | |
} | |
default_cfgs = { | |
'timesformer_vit_base_patch16_224': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth', | |
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), | |
), | |
} | |
class Mlp(nn.Module): | |
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class Attention(nn.Module): | |
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., with_qkv=True): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = qk_scale or head_dim ** -0.5 | |
self.with_qkv = with_qkv | |
if self.with_qkv: | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
self.attn_drop = nn.Dropout(attn_drop) | |
def forward(self, x): | |
B, N, C = x.shape | |
if self.with_qkv: | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0], qkv[1], qkv[2] | |
else: | |
qkv = x.reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) | |
q, k, v = qkv, qkv, qkv | |
attn = (q @ k.transpose(-2, -1)) * self.scale | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
if self.with_qkv: | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class Block(nn.Module): | |
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., | |
drop_path=0.1, act_layer=nn.GELU, norm_layer=nn.LayerNorm, attention_type='divided_space_time'): | |
super().__init__() | |
self.attention_type = attention_type | |
assert(attention_type in ['divided_space_time', 'space_only','joint_space_time']) | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention( | |
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) | |
## Temporal Attention Parameters | |
if self.attention_type == 'divided_space_time': | |
self.temporal_norm1 = norm_layer(dim) | |
self.temporal_attn = Attention( | |
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) | |
self.temporal_fc = nn.Linear(dim, dim) | |
## drop path | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
def forward(self, x, B, T, W): | |
num_spatial_tokens = (x.size(1) - 1) // T | |
H = num_spatial_tokens // W | |
if self.attention_type in ['space_only', 'joint_space_time']: | |
x = x + self.drop_path(self.attn(self.norm1(x))) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
return x | |
elif self.attention_type == 'divided_space_time': | |
## Temporal | |
xt = x[:,1:,:] | |
xt = rearrange(xt, 'b (h w t) m -> (b h w) t m',b=B,h=H,w=W,t=T) | |
res_temporal = self.drop_path(self.temporal_attn(self.temporal_norm1(xt))) | |
res_temporal = rearrange(res_temporal, '(b h w) t m -> b (h w t) m',b=B,h=H,w=W,t=T) | |
res_temporal = self.temporal_fc(res_temporal) | |
xt = x[:,1:,:] + res_temporal | |
## Spatial | |
init_cls_token = x[:,0,:].unsqueeze(1) | |
cls_token = init_cls_token.repeat(1, T, 1) | |
cls_token = rearrange(cls_token, 'b t m -> (b t) m',b=B,t=T).unsqueeze(1) | |
xs = xt | |
xs = rearrange(xs, 'b (h w t) m -> (b t) (h w) m',b=B,h=H,w=W,t=T) | |
xs = torch.cat((cls_token, xs), 1) | |
res_spatial = self.drop_path(self.attn(self.norm1(xs))) | |
### Taking care of CLS token | |
cls_token = res_spatial[:,0,:] | |
cls_token = rearrange(cls_token, '(b t) m -> b t m',b=B,t=T) | |
cls_token = torch.mean(cls_token,1,True) ## averaging for every frame | |
res_spatial = res_spatial[:,1:,:] | |
res_spatial = rearrange(res_spatial, '(b t) (h w) m -> b (h w t) m',b=B,h=H,w=W,t=T) | |
res = res_spatial | |
x = xt | |
## Mlp | |
x = torch.cat((init_cls_token, x), 1) + torch.cat((cls_token, res), 1) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
return x | |
class PatchEmbed(nn.Module): | |
""" Image to Patch Embedding | |
""" | |
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): | |
super().__init__() | |
img_size = to_2tuple(img_size) | |
patch_size = to_2tuple(patch_size) | |
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.num_patches = num_patches | |
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) | |
def forward(self, x): | |
B, C, T, H, W = x.shape | |
x = rearrange(x, 'b c t h w -> (b t) c h w') | |
x = self.proj(x) | |
W = x.size(-1) | |
x = x.flatten(2).transpose(1, 2) | |
return x, T, W | |
class VisionTransformer(nn.Module): | |
""" Vision Transformere | |
""" | |
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, | |
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., | |
drop_path_rate=0.1, hybrid_backbone=None, norm_layer=nn.LayerNorm, | |
num_frames=8, attention_type='divided_space_time', dropout=0., | |
return_hidden_state=False): | |
super().__init__() | |
self.attention_type = attention_type | |
self.depth = depth | |
self.dropout = nn.Dropout(dropout) | |
self.num_classes = num_classes | |
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models | |
self.patch_embed = PatchEmbed( | |
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) | |
num_patches = self.patch_embed.num_patches | |
## Positional Embeddings | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | |
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches+1, embed_dim)) | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
if self.attention_type != 'space_only': | |
self.time_embed = nn.Parameter(torch.zeros(1, num_frames, embed_dim)) | |
self.time_drop = nn.Dropout(p=drop_rate) | |
## Attention Blocks | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, self.depth)] # stochastic depth decay rule | |
self.blocks = nn.ModuleList([ | |
Block( | |
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, attention_type=self.attention_type) | |
for i in range(self.depth)]) | |
self.norm = norm_layer(embed_dim) | |
# Classifier head | |
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
trunc_normal_(self.pos_embed, std=.02) | |
trunc_normal_(self.cls_token, std=.02) | |
self.apply(self._init_weights) | |
## initialization of temporal attention weights | |
if self.attention_type == 'divided_space_time': | |
i = 0 | |
for m in self.blocks.modules(): | |
m_str = str(m) | |
if 'Block' in m_str: | |
if i > 0: | |
nn.init.constant_(m.temporal_fc.weight, 0) | |
nn.init.constant_(m.temporal_fc.bias, 0) | |
i += 1 | |
print("Load custom timesformer") | |
self.return_hidden_state = return_hidden_state | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def no_weight_decay(self): | |
return {'pos_embed', 'cls_token', 'time_embed'} | |
def get_classifier(self): | |
return self.head | |
def reset_classifier(self, num_classes, global_pool=''): | |
self.num_classes = num_classes | |
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
def forward_features(self, x, attention_type=None): | |
all_hidden_states = () if self.return_hidden_state else None | |
B = x.shape[0] | |
x, T, W = self.patch_embed(x) | |
cls_tokens = self.cls_token.expand(x.size(0), -1, -1) | |
x = torch.cat((cls_tokens, x), dim=1) | |
## resizing the positional embeddings in case they don't match the input at inference | |
if x.size(1) != self.pos_embed.size(1): | |
pos_embed = self.pos_embed | |
cls_pos_embed = pos_embed[0,0,:].unsqueeze(0).unsqueeze(1) | |
other_pos_embed = pos_embed[0,1:,:].unsqueeze(0).transpose(1, 2) | |
P = int(other_pos_embed.size(2) ** 0.5) | |
H = x.size(1) // W | |
other_pos_embed = other_pos_embed.reshape(1, x.size(2), P, P) | |
new_pos_embed = F.interpolate(other_pos_embed, size=(H, W), mode='nearest') | |
new_pos_embed = new_pos_embed.flatten(2) | |
new_pos_embed = new_pos_embed.transpose(1, 2) | |
new_pos_embed = torch.cat((cls_pos_embed, new_pos_embed), 1) | |
x = x + new_pos_embed | |
else: | |
x = x + self.pos_embed | |
x = self.pos_drop(x) | |
if attention_type is None: | |
attention_type = self.attention_type | |
## Time Embeddings | |
if attention_type != 'space_only': | |
cls_tokens = x[:B, 0, :].unsqueeze(1) | |
x = x[:,1:] | |
x = rearrange(x, '(b t) n m -> (b n) t m',b=B,t=T) | |
## Resizing time embeddings in case they don't match | |
if T != self.time_embed.size(1): | |
time_embed = self.time_embed.transpose(1, 2) | |
new_time_embed = F.interpolate(time_embed, size=(T), mode='nearest') | |
new_time_embed = new_time_embed.transpose(1, 2) | |
x = x + new_time_embed | |
else: | |
x = x + self.time_embed | |
x = self.time_drop(x) | |
x = rearrange(x, '(b n) t m -> b (n t) m',b=B,t=T) | |
x = torch.cat((cls_tokens, x), dim=1) | |
## Attention blocks | |
for blk in self.blocks: | |
x = blk(x, B, T, W) | |
if self.return_hidden_state: | |
all_hidden_states = all_hidden_states + (self.norm(x),) | |
### Predictions for space-only baseline | |
if attention_type == 'space_only': | |
x = rearrange(x, '(b t) n m -> b t n m',b=B,t=T) | |
x = torch.mean(x, 1) # averaging predictions for every frame | |
x = self.norm(x) | |
if self.return_hidden_state: | |
return x, all_hidden_states | |
else: | |
return x | |
def forward(self, x, attention_type=None): | |
x = self.forward_features(x, attention_type=attention_type) | |
return x | |
def _conv_filter(state_dict, patch_size=16): | |
""" convert patch embedding weight from manual patchify + linear proj to conv""" | |
out_dict = {} | |
for k, v in state_dict.items(): | |
if 'patch_embed.proj.weight' in k: | |
if v.shape[-1] != patch_size: | |
patch_size = v.shape[-1] | |
v = v.reshape((v.shape[0], 3, patch_size, patch_size)) | |
out_dict[k] = v | |
return out_dict | |
# @MODEL_REGISTRY.register() | |
class timesformer_vit_base_patch16_224(nn.Module): | |
def __init__(self, cfg, **kwargs): | |
super(timesformer_vit_base_patch16_224, self).__init__() | |
self.pretrained=True | |
patch_size = 16 | |
self.model = VisionTransformer(img_size=cfg.DATA.TRAIN_CROP_SIZE, | |
num_classes=cfg.MODEL.NUM_CLASSES, patch_size=patch_size, | |
embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, num_frames=cfg.DATA.NUM_FRAMES, attention_type=cfg.TIMESFORMER.ATTENTION_TYPE, **kwargs) | |
self.attention_type = cfg.TIMESFORMER.ATTENTION_TYPE | |
self.model.default_cfg = default_cfgs['timesformer_vit_base_patch16_224'] | |
self.num_patches = (cfg.DATA.TRAIN_CROP_SIZE // patch_size) * (cfg.DATA.TRAIN_CROP_SIZE // patch_size) | |
pretrained_model=cfg.TIMESFORMER.PRETRAINED_MODEL | |
if self.pretrained: | |
load_pretrained(self.model, num_classes=self.model.num_classes, in_chans=kwargs.get('in_chans', 3), filter_fn=_conv_filter, img_size=cfg.DATA.TRAIN_CROP_SIZE, num_patches=self.num_patches, attention_type=self.attention_type, pretrained_model=pretrained_model) | |
def forward(self, x): | |
x = self.model(x) | |
return x | |
# @MODEL_REGISTRY.register() | |
class TimeSformer(nn.Module): | |
def __init__(self, img_size=224, patch_size=16, num_classes=400, num_frames=8, | |
attention_type='divided_space_time', embed_dim=768, pretrained_model='', | |
audio_as_image=True, space_only_for_images=False, **kwargs): | |
super(TimeSformer, self).__init__() | |
self.pretrained=True | |
self.model = VisionTransformer(img_size=img_size, num_classes=num_classes, | |
patch_size=patch_size, embed_dim=embed_dim, depth=12, num_heads=12, mlp_ratio=4, | |
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, num_frames=num_frames, | |
attention_type=attention_type, **kwargs) | |
self.num_frames = num_frames | |
self.embed_dim = embed_dim | |
self.attention_type = attention_type | |
self.model.default_cfg = default_cfgs['timesformer_vit_base_patch'+str(patch_size)+'_224'] | |
self.num_patches = (img_size // patch_size) * (img_size // patch_size) | |
self.img_size = img_size | |
self.audio_as_image = audio_as_image | |
self.space_only_for_images = space_only_for_images | |
if self.pretrained: | |
load_pretrained(self.model, num_classes=self.model.num_classes, in_chans=kwargs.get('in_chans', 3), filter_fn=_conv_filter, img_size=img_size, num_frames=num_frames, num_patches=self.num_patches, attention_type=self.attention_type, pretrained_model=pretrained_model) | |
def forward(self, x, external_features=None): | |
if x.ndim == 4: # image as input | |
if not self.space_only_for_images: | |
x = x.unsqueeze(2).expand(-1, -1, self.num_frames, -1, -1) # B, C, f, H, W | |
else: | |
x = x.unsqueeze(2) # B, C, f, H, W | |
if x.ndim == 3: # image as input | |
B, H, W = x.shape | |
if self.audio_as_image: | |
x = x.unsqueeze(1).expand(-1, 3, -1, -1) # add C channel | |
x = torchvision.transforms.functional.resize(x, (self.img_size, self.img_size)) | |
if not self.space_only_for_images: | |
x = x.unsqueeze(2).expand(-1, -1, self.num_frames, -1, -1) # B, C, f, H, W | |
else: | |
x = x.unsqueeze(2) # B, C, f, H, W | |
else: | |
if H != W: # audio (1024, 128) another option is to make a square image | |
if H > W: | |
w = H/self.num_frames | |
# if w > W: | |
# w = w/2 | |
a = w - W # overlap a < 0 | |
x = x.unfold(1, W, int(W+a)) # from mel to square frames | |
x = x.unsqueeze(1).expand(-1, 3, -1, -1, -1) # add C channel | |
x = [torchvision.transforms.functional.resize(x[:, :, i, :, :], (self.img_size, self.img_size)).unsqueeze(2) for i in range(self.num_frames)] | |
x = torch.cat(x, dim=2) | |
x = (x - x.min()) / (x.max() - x.min()) # does not help | |
# print(x.shape) | |
if x.shape[-3] == 1 and self.space_only_for_images: # space only for images | |
attention_type = 'space_only' | |
else: | |
attention_type = None | |
x = self.model(x, attention_type=attention_type) | |
return x | |