Spaces:
Build error
Build error
import argparse | |
import os | |
import ruamel_yaml as yaml | |
import numpy as np | |
import random | |
import time | |
import datetime | |
import json | |
from pathlib import Path | |
import torch | |
import torch.backends.cudnn as cudnn | |
import torch.distributed as dist | |
from models.epalm import ePALM | |
from models.utils import freeze_whole_model, unfreeze_parameters, print_trainable_params_percentage | |
from transformers import AutoTokenizer | |
import utils | |
from dataset.video_caption import get_loader | |
from scheduler import create_scheduler | |
from optim import create_optimizer | |
from models.utils import filter_state, filter_msg, exclude_list | |
def train(model, data_loader, optimizer, tokenizer, epoch, warmup_steps, device, scheduler, config): | |
# train | |
model.train() | |
metric_logger = utils.MetricLogger(delimiter=" ") | |
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) | |
metric_logger.add_meter('loss', utils.SmoothedValue(window_size=1, fmt='{value:.4f}')) | |
header = 'Train Epoch: [{}]'.format(epoch) | |
print_freq = 50 | |
step_size = 100 | |
warmup_iterations = warmup_steps*step_size | |
lm_loss_weight = config.get('lm_loss_weight', 1) | |
append_eos_token = config.get('append_eos_token', False) | |
eos_token = tokenizer.eos_token | |
config_optim = utils.AttrDict(config['optimizer']) | |
prompt_lr = config_optim.prompt_lr if hasattr(config_optim, 'prompt_lr') else None | |
task_prompt = config.get('task_prompt', None) | |
if prompt_lr is not None: | |
metric_logger.add_meter('prompt_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) | |
for i, batch in enumerate(metric_logger.log_every(data_loader, print_freq, header)): | |
image = batch["images"].to(device,non_blocking=True) | |
text = batch["sent"] | |
if append_eos_token: | |
text = [t.replace(eos_token, '') + eos_token for t in text] | |
if task_prompt is not None: | |
text = [task_prompt + ' ' + t for t in text] | |
text_input = tokenizer(text, padding='longest', return_tensors="pt").to(device) | |
targets = text_input.input_ids.masked_fill(text_input.input_ids == tokenizer.pad_token_id, -100) | |
answer_output = model(image=image, | |
text=text_input, | |
labels = targets, | |
return_dict = True, | |
mode='train', | |
reduction='none', | |
) | |
loss = answer_output.loss | |
loss = loss.sum()/image.size(0) | |
loss = loss*lm_loss_weight | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
metric_logger.update(loss=loss.item()) | |
metric_logger.update(lr=optimizer.param_groups[0]["lr"]) | |
if prompt_lr is not None: | |
metric_logger.update(prompt_lr=optimizer.param_groups[1]["lr"]) | |
if epoch==0 and i%step_size==0 and i<=warmup_iterations: | |
scheduler.step(i//step_size) | |
# gather the stats from all processes | |
metric_logger.synchronize_between_processes() | |
print("Averaged stats:", metric_logger.global_avg()) | |
return {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()} | |
def evaluation(model, data_loader, tokenizer, device, config, max_length=30, nlgeval=None): | |
model.eval() | |
metric_logger = utils.MetricLogger(delimiter=" ") | |
header = 'Generate Caption test result:' | |
print_freq = 50 | |
predictions = [] | |
targets = [] | |
task_prompt = config.get('task_prompt', None) | |
pad_token = tokenizer.pad_token | |
eos_token = tokenizer.eos_token | |
for n, batch in enumerate(metric_logger.log_every(data_loader, print_freq, header)): | |
image = batch["images"].to(device,non_blocking=True) | |
text = ['' for q in image] | |
if task_prompt is not None: | |
text = [task_prompt + ' ' + t for t in text] | |
text_input = tokenizer(text, padding='longest', return_tensors="pt").to(device) | |
out = model(image=image, text=text_input, mode='generate', return_dict=True, max_length=max_length, do_sample=True) | |
out_decode = [] | |
for i, o in enumerate(out): | |
try: | |
res = tokenizer.decode(o) | |
response = res.split('</s>')[1].replace(pad_token, '').replace('</s>', '').replace(eos_token, '') # skip_special_tokens=True | |
except TypeError: | |
print(o) | |
response = ' ' | |
if task_prompt is not None: | |
response = response.replace(task_prompt, '') | |
out_decode.append(response) | |
predictions.extend(out_decode) | |
if 'targets' in batch: | |
targets.extend(batch['targets']) | |
evaluator = data_loader.evaluator | |
eval_results = evaluator.evaluate(predictions, targets) | |
wandb_log_dict = {} | |
for score_name, score in eval_results.items(): | |
wandb_log_dict[f'Valid/{score_name}'] = score | |
print(wandb_log_dict) | |
return wandb_log_dict | |
def main(args, config): | |
utils.init_distributed_mode(args) | |
device = torch.device(args.device) | |
# fix the seed for reproducibility | |
seed = args.seed + utils.get_rank() | |
torch.manual_seed(seed) | |
np.random.seed(seed) | |
random.seed(seed) | |
cudnn.benchmark = True | |
start_epoch = 0 | |
max_epoch = config['schedular']['epochs'] | |
warmup_steps = config['schedular']['warmup_epochs'] | |
print(args, config) | |
tokenizer = AutoTokenizer.from_pretrained(args.text_model, use_fast=False, local_files_only=True) | |
special_answer_token = config.get('special_answer_token', None) | |
special_eo_answer_token = config.get('special_eo_answer_token', None) | |
if special_answer_token is not None: | |
special_tokens_dict = {'additional_special_tokens': [special_answer_token]} | |
if special_eo_answer_token is not None: | |
special_tokens_dict['additional_special_tokens'] += [special_eo_answer_token] | |
tokenizer.add_special_tokens(special_tokens_dict) | |
print("Adding special token:", special_tokens_dict) | |
print(tokenizer) | |
if args.distributed: | |
num_tasks = utils.get_world_size() | |
global_rank = utils.get_rank() | |
else: | |
num_tasks = None | |
global_rank = None | |
######### | |
max_length = args.max_gen_length | |
num_workers = config.get('num_workers', 4) | |
train_topk = config.get('train_topk', -1) | |
valid_topk = config.get('valid_topk', -1) | |
data_dir = args.data_dir | |
args.image_size = config.get('image_res', 224) | |
args.use_data_augmentation = True | |
black_image = config.get('black_image', False) | |
print("black image:", black_image) | |
# video | |
args.num_frames = config.get('num_frames', 4) | |
args.as_images = config.get('as_images', True) | |
args.num_tries = config.get('num_tries', 1) | |
args.sample_type = config.get('sample_type', 'rand') | |
train_split = config.get('train_split', 'train') | |
val_split = config.get('val_split', 'val') | |
test_split = config.get('test_split', 'test') | |
train_loader = get_loader( | |
args, | |
split=train_split, mode='train', batch_size=config['batch_size_train'], | |
distributed=args.distributed, | |
workers=num_workers, | |
topk=train_topk, | |
data_dir=data_dir, | |
local_rank=global_rank, world_size=num_tasks, verbose=True, black_image=black_image | |
) | |
print('# len train loader:', len(train_loader)) | |
print(f'Building val loader') | |
val_loader = get_loader( | |
args, | |
split=val_split, mode='val', batch_size=config['batch_size_test'], | |
distributed=False, | |
workers=4, | |
topk=valid_topk,data_dir=data_dir, | |
local_rank=global_rank, world_size=num_tasks, verbose=True, black_image=black_image | |
) | |
print('# len val loader:', len(val_loader)) | |
print(f'Building test loader') | |
test_loader = get_loader( | |
args, | |
split=test_split, mode='val', batch_size=config['batch_size_test'], | |
distributed=False, | |
workers=4, | |
topk=valid_topk,data_dir=data_dir, | |
local_rank=global_rank, world_size=num_tasks, verbose=True | |
) | |
print('# len test loader:', len(test_loader)) | |
#### Model #### | |
print("Creating model") | |
start_layer_idx = config.get('start_layer_idx', 0) | |
end_layer_idx = config.get('end_layer_idx', 0) | |
vision_model_name = config.get('vision_model_name', args.vision_model) | |
model = ePALM(opt_model_name = args.text_model, | |
vision_model_name = vision_model_name, | |
use_vis_prefix = True, | |
start_layer_idx = start_layer_idx, | |
end_layer_idx = end_layer_idx, | |
return_hidden_state_vision = True, | |
config=config, | |
) | |
model = model.to(device) | |
arg_opt = utils.AttrDict(config['optimizer']) | |
optimizer = create_optimizer(arg_opt, model, config=config) | |
if hasattr(arg_opt, 'prompt_lr') and arg_opt.prompt_lr is not None: | |
print('\tInitial other params params lr: %f' % optimizer.param_groups[0]['lr']) | |
print('\tInitial prompt params lr: %f' % optimizer.param_groups[1]['lr']) | |
arg_sche = utils.AttrDict(config['schedular']) | |
lr_scheduler, _ = create_scheduler(arg_sche, optimizer) | |
best_epoch = 0 | |
best_valid = 0 | |
nlgeval = None | |
if args.checkpoint: | |
checkpoint = torch.load(args.checkpoint, map_location='cpu') | |
state_dict = checkpoint['model'] | |
msg = model.load_state_dict(state_dict,strict=False) | |
msg = filter_msg(msg, exclude_list) | |
print('load checkpoint from %s'%args.checkpoint) | |
print(msg) | |
if 'best_valid' in checkpoint: | |
print("load best valid {} at epoch {}".format(checkpoint['best_valid'] , checkpoint['best_epoch'] )) | |
if args.resume: | |
model = model.to(device) | |
optimizer.load_state_dict(checkpoint['optimizer']) | |
lr_scheduler.load_state_dict(checkpoint['lr_scheduler']) | |
start_epoch = checkpoint['epoch']+1 | |
print(checkpoint.keys()) | |
if 'best_valid' in checkpoint: | |
best_valid = checkpoint['best_valid'] | |
best_epoch = checkpoint['best_epoch'] | |
print("load best valid {} at epoch {}".format(best_valid, best_epoch)) | |
freeze_whole_model(model) | |
unfreeze_parameters(model, config) | |
print_trainable_params_percentage(model) | |
model_without_ddp = model | |
if args.distributed: | |
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) | |
model_without_ddp = model.module | |
print("Start training") | |
start_time = time.time() | |
for epoch in range(start_epoch, max_epoch): | |
if epoch>0: | |
lr_scheduler.step(epoch+warmup_steps) | |
if not args.evaluate: | |
if args.distributed: | |
train_loader.sampler.set_epoch(epoch) | |
train_stats = train(model, train_loader, optimizer, tokenizer, epoch, warmup_steps, device, lr_scheduler, config) | |
if args.evaluate: | |
break | |
valid_results = evaluation(model, val_loader, tokenizer, device, config, max_length=max_length, nlgeval=nlgeval) | |
if utils.is_main_process(): | |
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, | |
'epoch': epoch, | |
} | |
with open(os.path.join(args.output_dir, "log.txt"),"a") as f: | |
f.write(json.dumps(log_stats) + "\n") | |
save_obj = { | |
'model': filter_state(model_without_ddp.state_dict(), exclude_list), | |
'optimizer': optimizer.state_dict(), | |
'lr_scheduler': lr_scheduler.state_dict(), | |
'config': config, | |
'epoch': epoch, | |
'best_valid': best_valid, | |
'best_epoch': best_epoch, | |
} | |
if args.save_best: | |
valid_score = valid_results['Valid/CIDEr'] | |
if valid_score > best_valid or epoch == 0: | |
best_valid = valid_score | |
best_epoch = epoch | |
print("Save best epoch:", best_epoch) | |
save_obj['best_valid'] = best_valid | |
save_obj['best_epoch'] = best_epoch | |
torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_best.pth')) | |
torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_last.pth')) | |
dist.barrier() | |
if not args.evaluate: | |
checkpoint = torch.load(os.path.join(args.output_dir, 'checkpoint_best.pth'), map_location='cpu') | |
state_dict = checkpoint['model'] | |
msg = model.module.load_state_dict(state_dict,strict=False) | |
msg = filter_msg(msg, exclude_list) | |
print('load checkpoint for test from %s'%args.checkpoint) | |
print(msg) | |
vqa_result = evaluation(model, test_loader, tokenizer, device, config, max_length=max_length, nlgeval=nlgeval) | |
total_time = time.time() - start_time | |
total_time_str = str(datetime.timedelta(seconds=int(total_time))) | |
print('Training time {}'.format(total_time_str)) | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--config', default='./configs/VQA.yaml') | |
parser.add_argument('--checkpoint', default='') | |
parser.add_argument('--output_dir', default='output/vqa') | |
parser.add_argument('--evaluate', action='store_true') | |
parser.add_argument('--text_model', default='facebook/opt-350m') | |
parser.add_argument('--vision_model', default='vit_base_patch16_224') | |
parser.add_argument('--device', default='cuda') | |
parser.add_argument('--seed', default=42, type=int) | |
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes') | |
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') | |
parser.add_argument('--distributed', default=True, type=bool) | |
parser.add_argument('--data_dir', default='/data/mshukor/data') | |
parser.add_argument('--resume', action='store_true') | |
parser.add_argument('--save_best', action='store_true') | |
parser.add_argument('--image_dir', default='/data/mshukor/data') | |
parser.add_argument('--max_gen_length', default=30, type=int, help='max_gen_length') | |
args = parser.parse_args() | |
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader) | |
args.result_dir = os.path.join(args.output_dir, 'result') | |
Path(args.output_dir).mkdir(parents=True, exist_ok=True) | |
Path(args.result_dir).mkdir(parents=True, exist_ok=True) | |
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w')) | |
main(args, config) |