Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -19,16 +19,94 @@ import gradio as gr
|
|
19 |
|
20 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
def process_pdf():
|
23 |
print('process_pdf')
|
24 |
-
|
25 |
# image, cells = recognize_table(cropped_table)
|
26 |
|
27 |
# cell_coordinates = get_cell_coordinates_by_row(cells)
|
28 |
# df, data = apply_ocr(cell_coordinates, image)
|
29 |
|
|
|
30 |
# return image, df, data
|
31 |
-
return [], [], []
|
32 |
|
33 |
title = "Sheriff's Demo: Table Detection & Recognition with Table Transformer (TATR)."
|
34 |
description = """A demo by M Sheriff for table extraction with the Table Transformer.
|
@@ -39,8 +117,9 @@ after which the detected table is extracted and https://huggingface.co/microsoft
|
|
39 |
# examples = [['image.png'], ['mistral_paper.png']]
|
40 |
|
41 |
app = gr.Interface(fn=process_pdf,
|
42 |
-
inputs=gr.Image(type="pil"),
|
43 |
-
outputs=[gr.Image(type="pil"
|
|
|
44 |
title=title,
|
45 |
description=description,
|
46 |
# examples=examples
|
|
|
19 |
|
20 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
|
22 |
+
|
23 |
+
class MaxResize(object):
|
24 |
+
def __init__(self, max_size=800):
|
25 |
+
self.max_size = max_size
|
26 |
+
|
27 |
+
def __call__(self, image):
|
28 |
+
width, height = image.size
|
29 |
+
current_max_size = max(width, height)
|
30 |
+
scale = self.max_size / current_max_size
|
31 |
+
resized_image = image.resize((int(round(scale*width)), int(round(scale*height))))
|
32 |
+
|
33 |
+
return resized_image
|
34 |
+
|
35 |
+
detection_transform = transforms.Compose([
|
36 |
+
MaxResize(800),
|
37 |
+
transforms.ToTensor(),
|
38 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
39 |
+
])
|
40 |
+
|
41 |
+
structure_transform = transforms.Compose([
|
42 |
+
MaxResize(1000),
|
43 |
+
transforms.ToTensor(),
|
44 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
45 |
+
])
|
46 |
+
|
47 |
+
# load table detection model
|
48 |
+
# processor = TableTransformerImageProcessor(max_size=800)
|
49 |
+
model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-detection", revision="no_timm").to(device)
|
50 |
+
|
51 |
+
# load table structure recognition model
|
52 |
+
# structure_processor = TableTransformerImageProcessor(max_size=1000)
|
53 |
+
structure_model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition-v1.1-all").to(device)
|
54 |
+
|
55 |
+
# load EasyOCR reader
|
56 |
+
reader = easyocr.Reader(['en'])
|
57 |
+
|
58 |
+
|
59 |
+
def outputs_to_objects(outputs, img_size, id2label):
|
60 |
+
m = outputs.logits.softmax(-1).max(-1)
|
61 |
+
pred_labels = list(m.indices.detach().cpu().numpy())[0]
|
62 |
+
pred_scores = list(m.values.detach().cpu().numpy())[0]
|
63 |
+
pred_bboxes = outputs['pred_boxes'].detach().cpu()[0]
|
64 |
+
pred_bboxes = [elem.tolist() for elem in rescale_bboxes(pred_bboxes, img_size)]
|
65 |
+
|
66 |
+
objects = []
|
67 |
+
for label, score, bbox in zip(pred_labels, pred_scores, pred_bboxes):
|
68 |
+
class_label = id2label[int(label)]
|
69 |
+
if not class_label == 'no object':
|
70 |
+
objects.append({'label': class_label, 'score': float(score),
|
71 |
+
'bbox': [float(elem) for elem in bbox]})
|
72 |
+
return objects
|
73 |
+
|
74 |
+
|
75 |
+
def detect_and_crop_table(image):
|
76 |
+
# prepare image for the model
|
77 |
+
# pixel_values = processor(image, return_tensors="pt").pixel_values
|
78 |
+
pixel_values = detection_transform(image).unsqueeze(0).to(device)
|
79 |
+
|
80 |
+
# forward pass
|
81 |
+
with torch.no_grad():
|
82 |
+
outputs = model(pixel_values)
|
83 |
+
|
84 |
+
# postprocess to get detected tables
|
85 |
+
id2label = model.config.id2label
|
86 |
+
id2label[len(model.config.id2label)] = "no object"
|
87 |
+
detected_tables = outputs_to_objects(outputs, image.size, id2label)
|
88 |
+
|
89 |
+
# visualize
|
90 |
+
# fig = visualize_detected_tables(image, detected_tables)
|
91 |
+
# image = fig2img(fig)
|
92 |
+
|
93 |
+
# crop first detected table out of image
|
94 |
+
cropped_table = image.crop(detected_tables[0]["bbox"])
|
95 |
+
|
96 |
+
return cropped_table
|
97 |
+
|
98 |
+
|
99 |
def process_pdf():
|
100 |
print('process_pdf')
|
101 |
+
cropped_table = detect_and_crop_table(image)
|
102 |
# image, cells = recognize_table(cropped_table)
|
103 |
|
104 |
# cell_coordinates = get_cell_coordinates_by_row(cells)
|
105 |
# df, data = apply_ocr(cell_coordinates, image)
|
106 |
|
107 |
+
return cropped_table
|
108 |
# return image, df, data
|
109 |
+
//return [], [], []
|
110 |
|
111 |
title = "Sheriff's Demo: Table Detection & Recognition with Table Transformer (TATR)."
|
112 |
description = """A demo by M Sheriff for table extraction with the Table Transformer.
|
|
|
117 |
# examples = [['image.png'], ['mistral_paper.png']]
|
118 |
|
119 |
app = gr.Interface(fn=process_pdf,
|
120 |
+
inputs=gr.Image(type="pil"),
|
121 |
+
outputs=[gr.Image(type="pil")],
|
122 |
+
//outputs=[gr.Image(type="pil", label="Detected table"), gr.Dataframe(label="Table as CSV"), gr.JSON(label="Data as JSON")],
|
123 |
title=title,
|
124 |
description=description,
|
125 |
# examples=examples
|