Spaces:
Sleeping
Sleeping
import matplotlib.pyplot as plt | |
import matplotlib.patches as patches | |
from matplotlib.patches import Patch | |
import io | |
from PIL import Image, ImageDraw | |
import numpy as np | |
import csv | |
import pandas as pd | |
from torchvision import transforms | |
from transformers import AutoModelForObjectDetection | |
import torch | |
import easyocr | |
import gradio as gr | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
def process_pdf(): | |
print('process_pdf') | |
# cropped_table = detect_and_crop_table(image) | |
# image, cells = recognize_table(cropped_table) | |
# cell_coordinates = get_cell_coordinates_by_row(cells) | |
# df, data = apply_ocr(cell_coordinates, image) | |
# return image, df, data | |
return [], [], [] | |
title = "Sheriff's Demo: Table Detection & Recognition with Table Transformer (TATR)." | |
description = """A demo by M Sheriff for table extraction with the Table Transformer. | |
First, table detection is performed on the input image using https://huggingface.co/microsoft/table-transformer-detection, | |
after which the detected table is extracted and https://huggingface.co/microsoft/table-transformer-structure-recognition-v1.1-all recognizes the | |
individual rows, columns and cells. OCR is then performed per cell, row by row.""" | |
# examples = [['image.png'], ['mistral_paper.png']] | |
app = gr.Interface(fn=process_pdf, | |
inputs=gr.Image(type="pil"), | |
outputs=[gr.Image(type="pil", label="Detected table"), gr.Dataframe(label="Table as CSV"), gr.JSON(label="Data as JSON")], | |
title=title, | |
description=description, | |
# examples=examples | |
) | |
app.queue() | |
app.launch(debug=True) | |