Spaces:
No application file
No application file
File size: 9,811 Bytes
3883c60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import os
import torch.cuda
import torchaudio
import gradio
from webui.modules import util
from webui.modules.download import fill_models
flag_strings = ['denoise', 'denoise output', 'separate background']
def flatten_audio(audio_tensor: torch.Tensor | tuple[torch.Tensor, int] | tuple[int, torch.Tensor], add_batch=True):
if isinstance(audio_tensor, tuple):
if isinstance(audio_tensor[0], int):
return audio_tensor[0], flatten_audio(audio_tensor[1])
elif torch.is_tensor(audio_tensor[0]):
return flatten_audio(audio_tensor[0]), audio_tensor[1]
if audio_tensor.dtype == torch.int16:
audio_tensor = audio_tensor.float() / 32767.0
if audio_tensor.dtype == torch.int32:
audio_tensor = audio_tensor.float() / 2147483647.0
if len(audio_tensor.shape) == 2:
if audio_tensor.shape[0] == 2:
# audio_tensor = audio_tensor[0, :].div(2).add(audio_tensor[1, :].div(2))
audio_tensor = audio_tensor.mean(0)
elif audio_tensor.shape[1] == 2:
# audio_tensor = audio_tensor[:, 0].div(2).add(audio_tensor[:, 1].div(2))
audio_tensor = audio_tensor.mean(1)
audio_tensor = audio_tensor.flatten()
if add_batch:
audio_tensor = audio_tensor.unsqueeze(0)
return audio_tensor
def merge_and_match(x, y, sr):
# import scipy.signal
x = x / 2
y = y / 2
import torchaudio.functional as F
y = F.resample(y, sr, int(sr * (x.shape[-1] / y.shape[-1])))
if x.shape[0] > y.shape[0]:
x = x[-y.shape[0]:]
else:
y = y[-x.shape[0]:]
return x.add(y)
def get_models_installed():
return [gradio.update(choices=fill_models('rvc')), gradio.update()]
def unload_rvc():
import webui.modules.implementations.rvc.rvc as rvc
rvc.unload_rvc()
return [gradio.update(value=''), gradio.update(maximum=0, value=0, visible=False)]
def load_rvc(model):
if not model:
return unload_rvc()
import webui.modules.implementations.rvc.rvc as rvc
maximum = rvc.load_rvc(model)
return [gradio.update(), gradio.update(maximum=maximum, value=0, visible=maximum > 0)]
def denoise(sr, audio):
if not torch.is_tensor(audio):
audio = torch.tensor(audio)
if len(audio.shape) == 1:
audio = audio.unsqueeze(0)
audio = audio.detach().cpu().numpy()
import noisereduce.noisereduce as noisereduce
audio = torch.tensor(noisereduce.reduce_noise(y=audio, sr=sr))
return sr, audio
def gen(rvc_model_selected, speaker_id, pitch_extract, audio_in, up_key, index_rate, filter_radius, protect, crepe_hop_length, flag):
background = None
audio = None
sr, audio_in = audio_in
audio_tuple = (sr, torch.tensor(audio_in))
audio_tuple = flatten_audio(audio_tuple)
if 'separate background' in flag:
if not torch.is_tensor(audio_tuple[1]):
audio_tuple = (audio_tuple[0], torch.tensor(audio_tuple[1]).to(torch.float32))
if len(audio_tuple[1].shape) != 1:
audio_tuple = (audio_tuple[0], audio_tuple[1].flatten())
import webui.modules.implementations.rvc.split_audio as split_audio
foreground, background, sr = split_audio.split(*audio_tuple)
audio_tuple = flatten_audio((sr, foreground))
background = flatten_audio(background)
if 'denoise' in flag:
audio_tuple = denoise(*audio_tuple)
if rvc_model_selected:
print('Selected model', rvc_model_selected)
if len(audio_tuple[1].shape) == 1:
audio_tuple = (audio_tuple[0], audio_tuple[1].unsqueeze(0))
torchaudio.save('speakeraudio.wav', audio_tuple[1], audio_tuple[0])
import webui.modules.implementations.rvc.rvc as rvc
rvc.load_rvc(rvc_model_selected)
index_file = ''
try:
model_basedir = os.path.join('data', 'models', 'rvc', os.path.dirname(rvc_model_selected))
index_files = [f for f in os.listdir(model_basedir) if f.endswith('.index')]
if len(index_files) > 0:
for f in index_files:
full_path = os.path.join(model_basedir, f)
if 'added' in f:
index_file = full_path
if not index_file:
index_file = os.path.join(model_basedir, index_files[0])
except:
pass
out1, out2 = rvc.vc_single(speaker_id, 'speakeraudio.wav', up_key, None, pitch_extract, index_file, '', index_rate, filter_radius, 0, 1, protect, crepe_hop_length)
print(out1)
audio_tuple = out2
if background is not None and 'separate background' in flag:
audio = audio_tuple[1] if torch.is_tensor(audio_tuple[1]) else torch.tensor(audio_tuple[1])
audio_tuple = (audio_tuple[0], flatten_audio(audio, False))
background = flatten_audio(background if torch.is_tensor(background) else torch.tensor(background), False)
if audio_tuple[1].dtype == torch.int16:
audio = audio_tuple[1]
audio = audio.float() / 32767.0
audio_tuple = (audio_tuple[0], audio)
audio = audio_tuple[1]
audio_tuple = (audio_tuple[0], merge_and_match(audio_tuple[1], background, audio_tuple[0]))
if 'denoise output' in flag:
audio_tuple = denoise(*audio_tuple)
if torch.is_tensor(audio_tuple[1]):
audio_tuple = (audio_tuple[0], audio_tuple[1].flatten().detach().cpu().numpy())
sr = audio_tuple[0]
audio = (sr, audio.detach().cpu().numpy()) if audio is not None else None
background = (sr, background.detach().cpu().numpy()) if background is not None else None
return [audio_tuple, util.make_waveform(audio_tuple), background, audio]
def rvc():
with gradio.Row():
with gradio.Column():
use_microphone = gradio.Checkbox(label='Use microphone')
audio_el = gradio.Audio(label='Audio input')
from webui.ui.tabs.text_to_speech import to_rvc, audio_out
from webui.ui.ui import tabs_el
def to_rvc_func(audio):
return gradio.update(selected='π£βΆπ£ RVC'), audio
to_rvc.click(fn=to_rvc_func, inputs=audio_out, outputs=[tabs_el, audio_el])
def update_audio_input(use_mic):
return gradio.update(source='microphone' if use_mic else 'upload')
use_microphone.change(fn=update_audio_input, inputs=use_microphone, outputs=audio_el)
with gradio.Accordion('π£ RVC'):
with gradio.Row():
selected = gradio.Dropdown(get_models_installed()[0]['choices'], label='RVC Model')
with gradio.Column(elem_classes='smallsplit'):
refresh = gradio.Button('π', variant='tool secondary')
unload = gradio.Button('π£', variant='tool primary')
speaker_id = gradio.Slider(value=0, step=1, maximum=0, visible=False, label='Speaker id', info='For multi speaker models, the speaker to use.')
pitch_extract = gradio.CheckboxGroup(choices=["dio", "pm", "harvest", "torchcrepe", "torchcrepe tiny", "mangio-crepe", "mangio-crepe tiny", "rmvpe"], label='Pitch extraction', value='harvest', interactive=True, info='Default: dio. dio and pm are faster, harvest is slower but good. Crepe is good but uses GPU.')
crepe_hop_length = gradio.Slider(visible=False, minimum=64, maximum=512, step=64, value=128, label='torchcrepe hop length', info='The length of the hops used for torchcrepe\'s crepe implementation')
def update_crepe_hop_length_visible(pitch_mode: str):
return gradio.update(visible=any(['crepe' in v for v in pitch_mode]))
pitch_extract.change(fn=update_crepe_hop_length_visible, inputs=pitch_extract, outputs=crepe_hop_length)
refresh.click(fn=get_models_installed, outputs=[selected, speaker_id], show_progress=True)
unload.click(fn=unload_rvc, outputs=[selected, speaker_id], show_progress=True)
selected.select(fn=load_rvc, inputs=selected, outputs=[selected, speaker_id], show_progress=True)
index_rate = gradio.Slider(0, 1, 0.88, step=0.01, label='Index rate for feature retrieval', info='Default: 0.88. Higher is more indexing, takes longer but could be better')
filter_radius = gradio.Slider(0, 7, 3, step=1, label='Filter radius', info='Default: 3. Smooth out the pitches, should yield less voice cracks.')
up_key = gradio.Number(value=0, label='Pitch offset', info='Default: 0. Shift the pitch up or down')
protect = gradio.Slider(0, 0.5, 0.33, step=0.01, label='Protect amount', info='Default: 0.33. Avoid non voice sounds. Lower is more being ignored.')
flags = gradio.Dropdown(flag_strings, label='Flags', info='Things to apply on the audio input/output', multiselect=True)
with gradio.Column():
with gradio.Row():
generate = gradio.Button('Generate', variant='primary', elem_id='rvc-generate')
with gradio.Row():
audio_out = gradio.Audio(label='output audio', interactive=False)
with gradio.Row():
video_out = gradio.Video(label='output spectrogram video', interactive=False)
with gradio.Row():
audio_bg = gradio.Audio(label='background', interactive=False)
with gradio.Row():
audio_vocal = gradio.Audio(label='vocals', interactive=False)
generate.click(fn=gen, inputs=[selected, speaker_id, pitch_extract, audio_el,
up_key, index_rate, filter_radius, protect, crepe_hop_length, flags], outputs=[audio_out, video_out, audio_bg, audio_vocal])
|