Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,16 @@
|
|
1 |
import gradio as gr
|
2 |
-
from PyPDF2 import PdfReader
|
3 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
4 |
-
from gtts import gTTS
|
5 |
-
from io import BytesIO
|
6 |
|
7 |
-
# IPython check
|
8 |
-
try:
|
9 |
-
from IPython.display import Audio
|
10 |
-
ipython_available = True
|
11 |
-
except ImportError:
|
12 |
-
ipython_available = False
|
13 |
-
|
14 |
-
# Model
|
15 |
model_name = "ArtifactAI/led_large_16384_arxiv_summarization"
|
16 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
17 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
18 |
|
19 |
-
def summarize_pdf_abstract(
|
20 |
|
21 |
try:
|
22 |
-
reader = PdfReader(
|
23 |
-
|
24 |
-
abstract_text = ""
|
25 |
for page in reader.pages:
|
26 |
if "Abstract" in page.extract_text() or "Introduction" in page.extract_text():
|
27 |
abstract_text = page.extract_text()
|
@@ -29,22 +18,17 @@ def summarize_pdf_abstract(pdf_bytes):
|
|
29 |
|
30 |
inputs = tokenizer(abstract_text, return_tensors="pt")
|
31 |
outputs = model.generate(**inputs)
|
32 |
-
summary = tokenizer.decode(outputs[0])
|
33 |
-
|
34 |
-
if ipython_available:
|
35 |
-
speech = gTTS(text=summary, lang="en")
|
36 |
-
speech_bytes = speech.get_wav_data()
|
37 |
-
else:
|
38 |
-
speech_bytes = None
|
39 |
|
40 |
-
return {"summary": summary
|
41 |
|
42 |
except Exception as e:
|
43 |
raise Exception(str(e))
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from PyPDF2 import PdfReader
|
3 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
|
|
|
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
model_name = "ArtifactAI/led_large_16384_arxiv_summarization"
|
6 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
|
9 |
+
def summarize_pdf_abstract(pdf_file):
|
10 |
|
11 |
try:
|
12 |
+
reader = PdfReader(pdf_file)
|
13 |
+
abstract_text = ""
|
|
|
14 |
for page in reader.pages:
|
15 |
if "Abstract" in page.extract_text() or "Introduction" in page.extract_text():
|
16 |
abstract_text = page.extract_text()
|
|
|
18 |
|
19 |
inputs = tokenizer(abstract_text, return_tensors="pt")
|
20 |
outputs = model.generate(**inputs)
|
21 |
+
summary = tokenizer.decode(outputs[0])
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
return {"summary": summary}
|
24 |
|
25 |
except Exception as e:
|
26 |
raise Exception(str(e))
|
27 |
+
|
28 |
+
interface = gr.Interface(
|
29 |
+
fn=summarize_pdf_abstract,
|
30 |
+
inputs=gr.inputs.File(label="Upload PDF"),
|
31 |
+
outputs=gr.outputs.Textbox(label="Summary")
|
32 |
+
)
|
33 |
+
|
34 |
+
interface.launch(share=True)
|