Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,10 +1,7 @@
|
|
| 1 |
-
import torch
|
| 2 |
import gradio as gr
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed, pipeline
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
title = "Santacoder 🎅 bash/shell 🐚 Completion"
|
| 8 |
description = "This is a subspace to make code generation with [SantaCoder fine-tuned on The Stack bash/shell](https://huggingface.co/mrm8488/santacoder-finetuned-the-stack-bash-4)"
|
| 9 |
EXAMPLE_0 = "#!/bin/bash\n# This script removes files larger than 2MB in the current folder\nfind ."
|
| 10 |
EXAMPLE_1 = "#!/bin/bash\n\n# This script send an email\nto=”[email protected]”\nsubject=”Greeting”\nmsg=”Welcome to our site”\n"
|
|
@@ -18,7 +15,7 @@ model = AutoModelForCausalLM.from_pretrained("mrm8488/santacoder-finetuned-the-s
|
|
| 18 |
|
| 19 |
def code_generation(gen_prompt, max_tokens, temperature=0.6, seed=42):
|
| 20 |
set_seed(seed)
|
| 21 |
-
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=
|
| 22 |
generated_text = pipe(gen_prompt, do_sample=True, top_p=0.95, temperature=temperature, max_new_tokens=max_tokens)[0]['generated_text']
|
| 23 |
return generated_text
|
| 24 |
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed, pipeline
|
| 3 |
|
| 4 |
+
title = "SantaCoder 🎅 bash/shell 🐚 Completion"
|
|
|
|
|
|
|
| 5 |
description = "This is a subspace to make code generation with [SantaCoder fine-tuned on The Stack bash/shell](https://huggingface.co/mrm8488/santacoder-finetuned-the-stack-bash-4)"
|
| 6 |
EXAMPLE_0 = "#!/bin/bash\n# This script removes files larger than 2MB in the current folder\nfind ."
|
| 7 |
EXAMPLE_1 = "#!/bin/bash\n\n# This script send an email\nto=”[email protected]”\nsubject=”Greeting”\nmsg=”Welcome to our site”\n"
|
|
|
|
| 15 |
|
| 16 |
def code_generation(gen_prompt, max_tokens, temperature=0.6, seed=42):
|
| 17 |
set_seed(seed)
|
| 18 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0)
|
| 19 |
generated_text = pipe(gen_prompt, do_sample=True, top_p=0.95, temperature=temperature, max_new_tokens=max_tokens)[0]['generated_text']
|
| 20 |
return generated_text
|
| 21 |
|