Spaces:
Runtime error
Runtime error
| from diffusers import DDPMPipeline | |
| import gradio as gr | |
| from ui import title, description, examples | |
| RES = None | |
| models = [ | |
| {'type': 'pokemon', 'res': 64, 'id': 'mrm8488/ddpm-ema-pokemon-64'}, | |
| {'type': 'flowers', 'res': 64, 'id': 'mrm8488/ddpm-ema-flower-64'}, | |
| {'type': 'anime_faces', 'res': 128, 'id': 'mrm8488/ddpm-ema-anime-v2-128'}, | |
| {'type': 'butterflies', 'res': 128, 'id': 'mrm8488/ddpm-ema-butterflies-128'}, | |
| #{'type': 'human_faces', 'res': 256, 'id': 'fusing/ddpm-celeba-hq'} | |
| ] | |
| for model in models: | |
| print(model) | |
| pipeline = DDPMPipeline.from_pretrained(model['id']) | |
| pipeline.save_pretrained('.') | |
| model['pipeline'] = pipeline | |
| def predict(type): | |
| pipeline = None | |
| for model in models: | |
| if model['type'] == type: | |
| pipeline = model['pipeline'] | |
| RES = model['res'] | |
| break | |
| # run pipeline in inference | |
| image = pipeline()["sample"] | |
| return image[0] | |
| gr.Interface( | |
| predict, | |
| inputs=[gr.components.Dropdown(choices=[model['type'] for model in models], label='Choose a model') | |
| ], | |
| outputs=[gr.Image(shape=(64,64), type="pil", | |
| elem_id="generated_image")], | |
| title=title, | |
| description=description | |
| ).launch() | |