Spaces:
Sleeping
Sleeping
added files
Browse files- sample_level_encoding.py +274 -0
sample_level_encoding.py
ADDED
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse, os, sys, glob
|
2 |
+
import torch
|
3 |
+
import pickle
|
4 |
+
import numpy as np
|
5 |
+
from omegaconf import OmegaConf
|
6 |
+
from PIL import Image
|
7 |
+
from tqdm import tqdm, trange
|
8 |
+
from einops import rearrange
|
9 |
+
from torchvision.utils import make_grid
|
10 |
+
|
11 |
+
from ldm.util import instantiate_from_config
|
12 |
+
from ldm.models.diffusion.ddim import DDIMSampler
|
13 |
+
from ldm.models.diffusion.plms import PLMSSampler
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
def load_model_from_config(config, ckpt, verbose=False):
|
18 |
+
print(f"Loading model from {ckpt}")
|
19 |
+
# pl_sd = torch.load(ckpt, map_location="cpu")
|
20 |
+
pl_sd = torch.load(ckpt)#, map_location="cpu")
|
21 |
+
sd = pl_sd["state_dict"]
|
22 |
+
model = instantiate_from_config(config.model)
|
23 |
+
m, u = model.load_state_dict(sd, strict=False)
|
24 |
+
if len(m) > 0 and verbose:
|
25 |
+
print("missing keys:")
|
26 |
+
print(m)
|
27 |
+
if len(u) > 0 and verbose:
|
28 |
+
print("unexpected keys:")
|
29 |
+
print(u)
|
30 |
+
|
31 |
+
model.cuda()
|
32 |
+
model.eval()
|
33 |
+
return model
|
34 |
+
|
35 |
+
|
36 |
+
if __name__ == "__main__":
|
37 |
+
parser = argparse.ArgumentParser()
|
38 |
+
|
39 |
+
parser.add_argument(
|
40 |
+
"--prompt",
|
41 |
+
type=str,
|
42 |
+
nargs="?",
|
43 |
+
default="a painting of a virus monster playing guitar",
|
44 |
+
help="the prompt to render"
|
45 |
+
)
|
46 |
+
|
47 |
+
parser.add_argument(
|
48 |
+
"--outdir",
|
49 |
+
type=str,
|
50 |
+
nargs="?",
|
51 |
+
help="dir to write results to",
|
52 |
+
default="outputs/txt2img-samples"
|
53 |
+
)
|
54 |
+
parser.add_argument(
|
55 |
+
"--ddim_steps",
|
56 |
+
type=int,
|
57 |
+
default=200,
|
58 |
+
help="number of ddim sampling steps",
|
59 |
+
)
|
60 |
+
|
61 |
+
parser.add_argument(
|
62 |
+
"--plms",
|
63 |
+
action='store_true',
|
64 |
+
help="use plms sampling",
|
65 |
+
)
|
66 |
+
|
67 |
+
parser.add_argument(
|
68 |
+
"--ddim_eta",
|
69 |
+
type=float,
|
70 |
+
default=1.0,
|
71 |
+
help="ddim eta (eta=0.0 corresponds to deterministic sampling",
|
72 |
+
)
|
73 |
+
parser.add_argument(
|
74 |
+
"--n_iter",
|
75 |
+
type=int,
|
76 |
+
default=1,
|
77 |
+
help="sample this often",
|
78 |
+
)
|
79 |
+
|
80 |
+
parser.add_argument(
|
81 |
+
"--H",
|
82 |
+
type=int,
|
83 |
+
default=256,
|
84 |
+
help="image height, in pixel space",
|
85 |
+
)
|
86 |
+
|
87 |
+
parser.add_argument(
|
88 |
+
"--W",
|
89 |
+
type=int,
|
90 |
+
default=256,
|
91 |
+
help="image width, in pixel space",
|
92 |
+
)
|
93 |
+
|
94 |
+
parser.add_argument(
|
95 |
+
"--n_samples",
|
96 |
+
type=int,
|
97 |
+
default=4,
|
98 |
+
help="how many samples to produce for the given prompt",
|
99 |
+
)
|
100 |
+
|
101 |
+
parser.add_argument(
|
102 |
+
"--output_dir_name",
|
103 |
+
type=str,
|
104 |
+
default='default_file',
|
105 |
+
help="name of folder",
|
106 |
+
)
|
107 |
+
|
108 |
+
parser.add_argument(
|
109 |
+
"--postfix",
|
110 |
+
type=str,
|
111 |
+
default='',
|
112 |
+
help="name of folder",
|
113 |
+
)
|
114 |
+
|
115 |
+
parser.add_argument(
|
116 |
+
"--scale",
|
117 |
+
type=float,
|
118 |
+
# default=5.0,
|
119 |
+
default=1.0,
|
120 |
+
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
|
121 |
+
)
|
122 |
+
opt = parser.parse_args()
|
123 |
+
|
124 |
+
# --scale 1.0 --n_samples 3 --ddim_steps 20
|
125 |
+
|
126 |
+
# # #### CLIP f4
|
127 |
+
# config_path = '/globalscratch/mridul/ldm/clip/2023-11-09T15-34-23_CLIP_f4_maxlen77_classname/configs/2023-11-09T15-34-23-project.yaml'
|
128 |
+
# ckpt_path = '/globalscratch/mridul/ldm/clip/2023-11-09T15-34-23_CLIP_f4_maxlen77_classname/checkpoints/epoch=000158.ckpt'
|
129 |
+
|
130 |
+
# # #### CLIP f8
|
131 |
+
# config_path = '/globalscratch/mridul/ldm/clip/2023-11-09T15-30-05_CLIP_f8_maxlen77_classname/configs/2023-11-09T15-30-05-project.yaml'
|
132 |
+
# ckpt_path = '/globalscratch/mridul/ldm/clip/2023-11-09T15-30-05_CLIP_f8_maxlen77_classname/checkpoints/epoch=000119.ckpt'
|
133 |
+
|
134 |
+
#### Label Encoding
|
135 |
+
# config_path = '/globalscratch/mridul/ldm/test/test_bert/2023-11-13T23-08-55_TEST_f4_ancestral_label_encoding/configs/2023-11-13T23-08-55-project.yaml'
|
136 |
+
# ckpt_path = '/globalscratch/mridul/ldm/test/test_bert/2023-11-13T23-08-55_TEST_f4_ancestral_label_encoding/checkpoints/epoch=000119.ckpt'
|
137 |
+
|
138 |
+
#### Label Encoding Leave one out
|
139 |
+
# config_path = '/globalscratch/mridul/ldm/level_encoding/leave_out/2023-12-01T01-49-15_HLE_f4_label_encoding_leave_out/configs/2023-12-01T01-49-15-project.yaml'
|
140 |
+
# ckpt_path = '/globalscratch/mridul/ldm/level_encoding/leave_out/2023-12-01T01-49-15_HLE_f4_label_encoding_leave_out/checkpoints/epoch=000131.ckpt'
|
141 |
+
|
142 |
+
# ckpt_path = '/globalscratch/mridul/ldm/level_encoding/2023-12-03T09-33-45_HLE_f4_level_encoding_371/checkpoints/epoch=000119.ckpt'
|
143 |
+
# config_path = '/globalscratch/mridul/ldm/level_encoding/2023-12-03T09-33-45_HLE_f4_level_encoding_371/configs/2023-12-03T09-33-45-project.yaml'
|
144 |
+
|
145 |
+
|
146 |
+
# ### scale 1.25 - 137 epoch
|
147 |
+
# ckpt_path = '/globalscratch/mridul/ldm/level_encoding/2024-01-29T21-52-36_HLE_f4_scale1.25/checkpoints/epoch=000119.ckpt'
|
148 |
+
# config_path = '/globalscratch/mridul/ldm/level_encoding/2024-01-29T21-52-36_HLE_f4_scale1.25/configs/2024-01-29T21-52-36-project.yaml'
|
149 |
+
|
150 |
+
### scale 1.5 - 137 epoch
|
151 |
+
# ckpt_path = '/globalscratch/mridul/ldm/level_encoding/2024-01-29T20-33-03_HLE_f4_scale1.5/checkpoints/epoch=000119.ckpt'
|
152 |
+
# config_path = '/globalscratch/mridul/ldm/level_encoding/2024-01-29T20-33-03_HLE_f4_scale1.5/configs/2024-01-29T20-33-03-project.yaml'
|
153 |
+
|
154 |
+
|
155 |
+
# ### scale 2 - 137 epoch
|
156 |
+
# ckpt_path = '/globalscratch/mridul/ldm/level_encoding/2024-01-29T21-52-36_HLE_f4_scale2/checkpoints/epoch=000095.ckpt'
|
157 |
+
# config_path = '/globalscratch/mridul/ldm/level_encoding/2024-01-29T21-52-36_HLE_f4_scale2/configs/2024-01-29T21-52-36-project.yaml'
|
158 |
+
|
159 |
+
# ### scale 5 - 137 epoch
|
160 |
+
# ckpt_path = '/globalscratch/mridul/ldm/level_encoding/2024-01-29T20-26-32_HLE_f4_scale5/checkpoints/epoch=000095.ckpt'
|
161 |
+
# config_path = '/globalscratch/mridul/ldm/level_encoding/2024-01-29T20-26-32_HLE_f4_scale5/configs/2024-01-29T20-26-32-project.yaml'
|
162 |
+
|
163 |
+
# ### scale 10 - 137 epoch
|
164 |
+
# ckpt_path = '/globalscratch/mridul/ldm/level_encoding/2024-01-29T20-26-02_HLE_f4_scale10/checkpoints/epoch=000101.ckpt'
|
165 |
+
# config_path = '/globalscratch/mridul/ldm/level_encoding/2024-01-29T20-26-02_HLE_f4_scale10/configs/2024-01-29T20-26-02-project.yaml'
|
166 |
+
|
167 |
+
###### hle 371,
|
168 |
+
ckpt_path = '/globalscratch/mridul/ldm/final_runs_eccv/fishes/2024-03-01T23-15-36_HLE_days3/checkpoints/epoch=000119.ckpt'
|
169 |
+
config_path = '/globalscratch/mridul/ldm/final_runs_eccv/fishes/2024-03-01T23-15-36_HLE_days3/configs/2024-03-01T23-15-36-project.yaml'
|
170 |
+
|
171 |
+
|
172 |
+
label_to_class_mapping = {0: 'Alosa-chrysochloris', 1: 'Carassius-auratus', 2: 'Cyprinus-carpio', 3: 'Esox-americanus',
|
173 |
+
4: 'Gambusia-affinis', 5: 'Lepisosteus-osseus', 6: 'Lepisosteus-platostomus', 7: 'Lepomis-auritus', 8: 'Lepomis-cyanellus',
|
174 |
+
9: 'Lepomis-gibbosus', 10: 'Lepomis-gulosus', 11: 'Lepomis-humilis', 12: 'Lepomis-macrochirus', 13: 'Lepomis-megalotis',
|
175 |
+
14: 'Lepomis-microlophus', 15: 'Morone-chrysops', 16: 'Morone-mississippiensis', 17: 'Notropis-atherinoides',
|
176 |
+
18: 'Notropis-blennius', 19: 'Notropis-boops', 20: 'Notropis-buccatus', 21: 'Notropis-buchanani', 22: 'Notropis-dorsalis',
|
177 |
+
23: 'Notropis-hudsonius', 24: 'Notropis-leuciodus', 25: 'Notropis-nubilus', 26: 'Notropis-percobromus',
|
178 |
+
27: 'Notropis-stramineus', 28: 'Notropis-telescopus', 29: 'Notropis-texanus', 30: 'Notropis-volucellus',
|
179 |
+
31: 'Notropis-wickliffi', 32: 'Noturus-exilis', 33: 'Noturus-flavus', 34: 'Noturus-gyrinus', 35: 'Noturus-miurus',
|
180 |
+
36: 'Noturus-nocturnus', 37: 'Phenacobius-mirabilis'}
|
181 |
+
|
182 |
+
def get_label_from_class(class_name):
|
183 |
+
for key, value in label_to_class_mapping.items():
|
184 |
+
if value == class_name:
|
185 |
+
return key
|
186 |
+
|
187 |
+
config = OmegaConf.load(config_path) # TODO: Optionally download from same location as ckpt and chnage this logic
|
188 |
+
model = load_model_from_config(config, ckpt_path) # TODO: check path
|
189 |
+
|
190 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
191 |
+
model = model.to(device)
|
192 |
+
|
193 |
+
if opt.plms:
|
194 |
+
sampler = PLMSSampler(model)
|
195 |
+
else:
|
196 |
+
sampler = DDIMSampler(model)
|
197 |
+
|
198 |
+
os.makedirs(opt.outdir, exist_ok=True)
|
199 |
+
outpath = opt.outdir
|
200 |
+
|
201 |
+
prompt = opt.prompt
|
202 |
+
all_images = []
|
203 |
+
labels = []
|
204 |
+
|
205 |
+
class_to_node = '/fastscratch/mridul/fishes/class_to_ancestral_label.pkl'
|
206 |
+
with open(class_to_node, 'rb') as pickle_file:
|
207 |
+
class_to_node_dict = pickle.load(pickle_file)
|
208 |
+
|
209 |
+
sample_path = os.path.join(outpath, opt.output_dir_name)
|
210 |
+
os.makedirs(sample_path, exist_ok=True)
|
211 |
+
base_count = len(os.listdir(sample_path))
|
212 |
+
|
213 |
+
for class_name, node_representation in tqdm(class_to_node_dict.items()):
|
214 |
+
prompt = node_representation
|
215 |
+
all_samples=list()
|
216 |
+
with torch.no_grad():
|
217 |
+
with model.ema_scope():
|
218 |
+
uc = None
|
219 |
+
# if opt.scale != 1.0:
|
220 |
+
# uc = model.get_learned_conditioning(opt.n_samples * [""])
|
221 |
+
for n in trange(opt.n_iter, desc="Sampling"):
|
222 |
+
|
223 |
+
all_prompts = opt.n_samples * (prompt)
|
224 |
+
all_prompts = [tuple(all_prompts)]
|
225 |
+
print(class_name, prompt)
|
226 |
+
c = model.get_learned_conditioning({'class_to_node': all_prompts})
|
227 |
+
shape = [3, 64, 64]
|
228 |
+
samples_ddim, _ = sampler.sample(S=opt.ddim_steps,
|
229 |
+
conditioning=c,
|
230 |
+
batch_size=opt.n_samples,
|
231 |
+
shape=shape,
|
232 |
+
verbose=False,
|
233 |
+
unconditional_guidance_scale=opt.scale,
|
234 |
+
unconditional_conditioning=uc,
|
235 |
+
eta=opt.ddim_eta)
|
236 |
+
|
237 |
+
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
238 |
+
x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0)
|
239 |
+
|
240 |
+
all_samples.append(x_samples_ddim)
|
241 |
+
|
242 |
+
###### to make grid
|
243 |
+
# additionally, save as grid
|
244 |
+
grid = torch.stack(all_samples, 0)
|
245 |
+
grid = rearrange(grid, 'n b c h w -> (n b) c h w')
|
246 |
+
grid = make_grid(grid, nrow=opt.n_samples)
|
247 |
+
|
248 |
+
# to image
|
249 |
+
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
|
250 |
+
Image.fromarray(grid.astype(np.uint8)).save(os.path.join(sample_path, f'{class_name.replace(" ", "-")}.png'))
|
251 |
+
|
252 |
+
# # individual images
|
253 |
+
# grid = torch.stack(all_samples, 0)
|
254 |
+
# grid = rearrange(grid, 'n b c h w -> (n b) c h w')
|
255 |
+
|
256 |
+
# for i in range(opt.n_samples):
|
257 |
+
# sample = grid[i]
|
258 |
+
# img = 255. * rearrange(sample, 'c h w -> h w c').cpu().numpy()
|
259 |
+
# img_arr = img.astype(np.uint8)
|
260 |
+
# class_name = class_name.replace(" ", "-")
|
261 |
+
# all_images.append(img_arr)
|
262 |
+
# labels.append(get_label_from_class(class_name))
|
263 |
+
# Image.fromarray(img_arr).save(f'{sample_path}/{class_name}_{i}.png')
|
264 |
+
|
265 |
+
# all_images = np.array(all_images)
|
266 |
+
# labels = np.array(labels)
|
267 |
+
|
268 |
+
# np.savez(sample_path + '.npz', all_images, labels)
|
269 |
+
|
270 |
+
|
271 |
+
print(f"Your samples are ready and waiting four you here: \n{sample_path} \nEnjoy.")
|
272 |
+
|
273 |
+
|
274 |
+
# python sample_text.py --outdir /home/mridul/sample_images_text --scale 1.0 --n_samples 3 --ddim_steps 200 --ddim_eta 1.0
|