mridulk's picture
added few more files
d759c1a
import torch
import torch.nn as nn
from functools import partial
import clip
import open_clip
from einops import rearrange, repeat
from transformers import CLIPTokenizer, CLIPTextModel
# import kornia
from transformers import BertTokenizerFast # TODO: add to reuquirements
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
class AbstractEncoder(nn.Module):
def __init__(self):
super().__init__()
def encode(self, *args, **kwargs):
raise NotImplementedError
class ClassEmbedder(nn.Module):
def __init__(self, embed_dim, n_classes=1000, key='class'):
super().__init__()
self.key = key
self.embedding = nn.Embedding(n_classes, embed_dim)
def forward(self, batch, key=None):
if key is None:
key = self.key
# this is for use in crossattn
c = batch[key][:, None]
c = self.embedding(c)
return c
class HeirClassEmbedder(nn.Module):
def __init__(self, embed_dim, n_classes=[3, 6, 9, 38], key='class', device='cuda'):
super().__init__()
assert embed_dim % len(n_classes) == 0
self.key = key
self.device = device
self.embed_heir_dim = embed_dim//len(n_classes)
self.embedding_layers = []
self.embedding_level0 = nn.Embedding(n_classes[0], self.embed_heir_dim)
self.embedding_level1 = nn.Embedding(n_classes[1], self.embed_heir_dim)
self.embedding_level2 = nn.Embedding(n_classes[2], self.embed_heir_dim)
self.embedding_level3 = nn.Embedding(n_classes[3], self.embed_heir_dim)
# for i in list(n_classes):
# embedding = nn.Embedding(i, self.embed_heir_dim)
# self.embedding_layers.append(embedding)
def forward(self, batch, key=None):
if key is None:
key = self.key
# this is for use in crossattn
batch_size = len(batch[key][0])
heir_classes = batch[key]
# heir_classes_list = []
# for s in heir_classes:
# numbers = s.split(', ')
# heir_classes_list.extend(int(num) for num in numbers)
heir_classes = [[int(num) for num in item.split(', ')] for item in heir_classes[0]]
transformed_list = [list(pair) for pair in zip(*heir_classes)]
tensor_list = [torch.tensor(sublist).to(self.device) for sublist in transformed_list]
tensor_reshaped = [torch.reshape(sublist, (batch_size, 1)) for sublist in tensor_list]
embedding_list = [self.embedding_level0(tensor_reshaped[0]), self.embedding_level1(tensor_reshaped[1]),
self.embedding_level2(tensor_reshaped[2]), self.embedding_level3(tensor_reshaped[3])]
# embedding = []
# for i, classes in enumerate(heir_classes):
# embedding.append(self.embedding_layers[i](classes))
embedding = torch.cat(embedding_list, dim=-1)
return embedding
class HeirClassEmbedderMultiLevel(nn.Module):
def __init__(self, embed_dim, n_classes=[3, 6, 9, 38], key='class', device='cuda'):
super().__init__()
assert embed_dim % len(n_classes) == 0
self.key = key
self.device = device
self.n_classes = n_classes
self.embed_heir_dim = embed_dim//len(n_classes)
self.embedding_layers = []
self.embedding_level0 = nn.Embedding(n_classes[0], self.embed_heir_dim)
self.embedding_level1 = nn.Embedding(n_classes[1], self.embed_heir_dim)
self.embedding_level2 = nn.Embedding(n_classes[2], self.embed_heir_dim)
self.embedding_level3 = nn.Embedding(n_classes[3], self.embed_heir_dim)
# self.embedding_level4 = nn.Embedding(n_classes[4], self.embed_heir_dim)
# self.embedding_layers = []
self.embedding_layers = nn.ModuleList()
for i in list(n_classes):
embedding = nn.Embedding(i, self.embed_heir_dim)
self.embedding_layers.append(embedding.to(self.device))
# self.to(self.device)
def forward(self, batch, key=None):
if key is None:
key = self.key
# this is for use in crossattn
batch_size = len(batch[key][0])
hier_classes = batch[key]
# heir_classes_list = []
# for s in heir_classes:
# numbers = s.split(', ')
# heir_classes_list.extend(int(num) for num in numbers)
hier_classes = [[int(num) for num in item.split(', ')] for item in hier_classes[0]]
transformed_list = [list(pair) for pair in zip(*hier_classes)]
tensor_list = [torch.tensor(sublist).to(self.device) for sublist in transformed_list]
tensor_reshaped = [torch.reshape(sublist, (batch_size, 1)) for sublist in tensor_list]
embedding_list = []
for i in range(len(self.n_classes)):
embedding_list.append(self.embedding_layers[i](tensor_reshaped[i]))
# embedding_list_org = [self.embedding_level0(tensor_reshaped[0]), self.embedding_level1(tensor_reshaped[1]),
# self.embedding_level2(tensor_reshaped[2]), self.embedding_level3(tensor_reshaped[3]),
# self.embedding_level3(tensor_reshaped[4])]
# embedding_list_org = [self.embedding_level0(tensor_reshaped[0]), self.embedding_level1(tensor_reshaped[1]),
# self.embedding_level2(tensor_reshaped[2]), self.embedding_level3(tensor_reshaped[3])]
# embedding_org = torch.cat(embedding_list_org, dim=-1)
embedding = torch.cat(embedding_list, dim=-1)
return embedding
class TransformerEmbedder(AbstractEncoder):
"""Some transformer encoder layers"""
def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"):
super().__init__()
self.device = device
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
attn_layers=Encoder(dim=n_embed, depth=n_layer))
def forward(self, tokens):
tokens = tokens.to(self.device) # meh
z = self.transformer(tokens, return_embeddings=True)
return z
def encode(self, x):
return self(x)
class BERTTokenizer(AbstractEncoder):
""" Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
def __init__(self, device="cuda", vq_interface=True, max_length=77):
super().__init__()
self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
self.device = device
self.vq_interface = vq_interface
self.max_length = max_length
def forward(self, text):
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
tokens = batch_encoding["input_ids"].to(self.device)
return tokens
@torch.no_grad()
def encode(self, text):
tokens = self(text)
if not self.vq_interface:
return tokens
return None, None, [None, None, tokens]
def decode(self, text):
return text
class BERTEmbedderExtra(AbstractEncoder):
"""Uses the BERT tokenizr model and add some transformer encoder layers"""
def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77,
device="cuda",use_tokenizer=True, embedding_dropout=0.0):
super().__init__()
self.use_tknz_fn = use_tokenizer
if self.use_tknz_fn:
self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len)
self.device = device
special_tokens_dict = {'additional_special_tokens': ['<N>','<E>']}
num_added_toks = self.tknz_fn.tokenizer.add_special_tokens(special_tokens_dict)
vocab_size = len(self.tknz_fn.tokenizer)
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
attn_layers=Encoder(dim=n_embed, depth=n_layer),
emb_dropout=embedding_dropout)
def forward(self, text):
if self.use_tknz_fn:
tokens = self.tknz_fn(text)#.to(self.device)
else:
tokens = text
z = self.transformer(tokens, return_embeddings=True)
return z
def encode(self, text):
# output of length 77
return self(text)
class BERTEmbedder(AbstractEncoder):
"""Uses the BERT tokenizr model and add some transformer encoder layers"""
def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77,
device="cuda",use_tokenizer=True, embedding_dropout=0.0):
super().__init__()
self.use_tknz_fn = use_tokenizer
if self.use_tknz_fn:
self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len)
self.device = device
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
attn_layers=Encoder(dim=n_embed, depth=n_layer),
emb_dropout=embedding_dropout)
def forward(self, text):
if self.use_tknz_fn:
tokens = self.tknz_fn(text)#.to(self.device)
else:
tokens = text
z = self.transformer(tokens, return_embeddings=True)
return z
def encode(self, text):
# output of length 77
return self(text)
class SpatialRescaler(nn.Module):
def __init__(self,
n_stages=1,
method='bilinear',
multiplier=0.5,
in_channels=3,
out_channels=None,
bias=False):
super().__init__()
self.n_stages = n_stages
assert self.n_stages >= 0
assert method in ['nearest','linear','bilinear','trilinear','bicubic','area']
self.multiplier = multiplier
self.interpolator = partial(torch.nn.functional.interpolate, mode=method)
self.remap_output = out_channels is not None
if self.remap_output:
print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.')
self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias)
def forward(self,x):
for stage in range(self.n_stages):
x = self.interpolator(x, scale_factor=self.multiplier)
if self.remap_output:
x = self.channel_mapper(x)
return x
def encode(self, x):
return self(x)
### not using - hugging face implementation
class FrozenCLIPEmbedder(AbstractEncoder):
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77):
super().__init__()
self.tokenizer = CLIPTokenizer.from_pretrained(version)
self.transformer = CLIPTextModel.from_pretrained(version)
self.transformer.projection_dim = 512
self.device = device
self.max_length = max_length
self.freeze()
def freeze(self):
self.transformer = self.transformer.eval()
for param in self.parameters():
param.requires_grad = False
def forward(self, text):
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
tokens = batch_encoding["input_ids"].to(self.device)
outputs = self.transformer(input_ids=tokens)
z = outputs.last_hidden_state
# pooled_output = outputs.pooler_output
# return pooled_output
return z
def encode(self, text):
return self(text)
class FrozenCLIPTextEmbedder(nn.Module):
"""
Uses the CLIP transformer encoder for text.
"""
def __init__(self, version='ViT-L/14', device="cuda", max_length=77, n_repeat=1, normalize=True):
super().__init__()
self.model, _ = clip.load(version, jit=False, device="cpu")
self.device = device
self.max_length = max_length
self.n_repeat = n_repeat
self.normalize = normalize
def freeze(self):
self.model = self.model.eval()
for param in self.parameters():
param.requires_grad = False
def forward(self, text):
tokens = clip.tokenize(text).to(self.device)
z = self.model.encode_text(tokens)
if self.normalize:
z = z / torch.linalg.norm(z, dim=1, keepdim=True)
return z
def encode(self, text):
z = self(text)
if z.ndim==2:
z = z[:, None, :]
z = repeat(z, 'b 1 d -> b k d', k=self.n_repeat)
return z
class FrozenBioClipTextEmbedder(nn.Module):
"""
Uses the BioClip transformer encoder for text.
"""
def __init__(self, version='hf-hub:imageomics/bioclip', device="cuda", max_length=77, n_repeat=1, normalize=True):
super().__init__()
# self.model, _ = open_clip.create_model_and_transforms(version, jit=False, device="cpu")
self.model, _, _ = open_clip.create_model_and_transforms(version)
self.model = self.model.eval()
self.model = self.model.to(device)
self.tokenizer = open_clip.get_tokenizer(version)
self.device = device
self.max_length = max_length
self.n_repeat = n_repeat
self.normalize = normalize
# model = model.eval()
# model = model.to(device)
def freeze(self):
self.model = self.model.eval()
for param in self.parameters():
param.requires_grad = False
def forward(self, text):
tokens = self.tokenizer(text).to(self.device)
z = self.model.encode_text(tokens)
if self.normalize:
z = z / torch.linalg.norm(z, dim=1, keepdim=True)
return z
def encode(self, text):
z = self(text)
if z.ndim==2:
z = z[:, None, :]
z = repeat(z, 'b 1 d -> b k d', k=self.n_repeat)
return z
# class FrozenClipImageEmbedder(nn.Module):
# """
# Uses the CLIP image encoder.
# """
# def __init__(
# self,
# model,
# jit=False,
# device='cuda' if torch.cuda.is_available() else 'cpu',
# antialias=False,
# ):
# super().__init__()
# self.model, _ = clip.load(name=model, device=device, jit=jit)
# self.antialias = antialias
# self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
# self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
# def preprocess(self, x):
# # normalize to [0,1]
# x = kornia.geometry.resize(x, (224, 224),
# interpolation='bicubic',align_corners=True,
# antialias=self.antialias)
# x = (x + 1.) / 2.
# # renormalize according to clip
# x = kornia.enhance.normalize(x, self.mean, self.std)
# return x
# def forward(self, x):
# # x is assumed to be in range [-1,1]
# return self.model.encode_image(self.preprocess(x))