phylo-diffusion / app.py
mridulk's picture
updated app for making it a radio button to select between the experiment
b303c70 verified
raw
history blame
12.3 kB
import torch
import gradio as gr
import argparse, os, sys, glob
import torch
import pickle
import numpy as np
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm, trange
from einops import rearrange
from torchvision.utils import make_grid
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
def load_model_from_config(config, ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
# pl_sd = torch.load(ckpt)#, map_location="cpu")
sd = pl_sd["state_dict"]
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
# model.cuda()
model.eval()
return model
def masking_embed(embedding, levels=1):
"""
size of embedding - nx1xd, n: number of samples, d - 512
replacing the last 128*levels from the embedding
"""
replace_size = 128*levels
random_noise = torch.randn(embedding.shape[0], embedding.shape[1], replace_size)
embedding[:, :, -replace_size:] = random_noise
return embedding
# LOAD MODEL GLOBALLY
ckpt_path = './model_files/fishes/epoch=000119.ckpt'
config_path = './model_files/fishes/2024-03-01T23-15-36-project.yaml'
config = OmegaConf.load(config_path) # TODO: Optionally download from same location as ckpt and chnage this logic
model = load_model_from_config(config, ckpt_path) # TODO: check path
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)
def generate_image(fish_name, masking_level_input,
swap_fish_name, swap_level_input):
fish_name = fish_name.lower()
label_to_class_mapping = {0: 'Alosa-chrysochloris', 1: 'Carassius-auratus', 2: 'Cyprinus-carpio', 3: 'Esox-americanus',
4: 'Gambusia-affinis', 5: 'Lepisosteus-osseus', 6: 'Lepisosteus-platostomus', 7: 'Lepomis-auritus', 8: 'Lepomis-cyanellus',
9: 'Lepomis-gibbosus', 10: 'Lepomis-gulosus', 11: 'Lepomis-humilis', 12: 'Lepomis-macrochirus', 13: 'Lepomis-megalotis',
14: 'Lepomis-microlophus', 15: 'Morone-chrysops', 16: 'Morone-mississippiensis', 17: 'Notropis-atherinoides',
18: 'Notropis-blennius', 19: 'Notropis-boops', 20: 'Notropis-buccatus', 21: 'Notropis-buchanani', 22: 'Notropis-dorsalis',
23: 'Notropis-hudsonius', 24: 'Notropis-leuciodus', 25: 'Notropis-nubilus', 26: 'Notropis-percobromus',
27: 'Notropis-stramineus', 28: 'Notropis-telescopus', 29: 'Notropis-texanus', 30: 'Notropis-volucellus',
31: 'Notropis-wickliffi', 32: 'Noturus-exilis', 33: 'Noturus-flavus', 34: 'Noturus-gyrinus', 35: 'Noturus-miurus',
36: 'Noturus-nocturnus', 37: 'Phenacobius-mirabilis'}
def get_label_from_class(class_name):
for key, value in label_to_class_mapping.items():
if value == class_name:
return key
if opt.plms:
sampler = PLMSSampler(model)
else:
sampler = DDIMSampler(model)
prompt = opt.prompt
all_images = []
labels = []
class_to_node = './model_files/fishes/class_to_ancestral_label.pkl'
with open(class_to_node, 'rb') as pickle_file:
class_to_node_dict = pickle.load(pickle_file)
class_to_node_dict = {key.lower(): value for key, value in class_to_node_dict.items()}
prompt = class_to_node_dict[fish_name]
### Trait Swapping
if swap_fish_name:
swap_fish_name = swap_fish_name.lower()
swap_level = int(swap_level_input.split(" ")[-1]) - 1
swap_fish = class_to_node_dict[swap_fish_name]
swap_fish_split = swap_fish[0].split(',')
fish_name_split = prompt[0].split(',')
fish_name_split[swap_level] = swap_fish_split[swap_level]
prompt = [','.join(fish_name_split)]
all_samples=list()
with torch.no_grad():
with model.ema_scope():
uc = None
for n in trange(opt.n_iter, desc="Sampling"):
all_prompts = opt.n_samples * (prompt)
all_prompts = [tuple(all_prompts)]
c = model.get_learned_conditioning({'class_to_node': all_prompts})
if masking_level_input != "None":
masked_level = int(masking_level_input.split(" ")[-1])
masked_level = 4-masked_level
c = masking_embed(c, levels=masked_level)
shape = [3, 64, 64]
samples_ddim, _ = sampler.sample(S=opt.ddim_steps,
conditioning=c,
batch_size=opt.n_samples,
shape=shape,
verbose=False,
unconditional_guidance_scale=opt.scale,
unconditional_conditioning=uc,
eta=opt.ddim_eta)
x_samples_ddim = model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0)
all_samples.append(x_samples_ddim)
###### to make grid
# additionally, save as grid
grid = torch.stack(all_samples, 0)
grid = rearrange(grid, 'n b c h w -> (n b) c h w')
grid = make_grid(grid, nrow=opt.n_samples)
# to image
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
final_image = Image.fromarray(grid.astype(np.uint8))
return final_image
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--prompt",
type=str,
nargs="?",
default="a painting of a virus monster playing guitar",
help="the prompt to render"
)
parser.add_argument(
"--ddim_steps",
type=int,
default=200,
help="number of ddim sampling steps",
)
parser.add_argument(
"--plms",
action='store_true',
help="use plms sampling",
)
parser.add_argument(
"--ddim_eta",
type=float,
default=1.0,
help="ddim eta (eta=0.0 corresponds to deterministic sampling",
)
parser.add_argument(
"--n_iter",
type=int,
default=1,
help="sample this often",
)
parser.add_argument(
"--n_samples",
type=int,
default=1,
help="how many samples to produce for the given prompt",
)
parser.add_argument(
"--scale",
type=float,
# default=5.0,
default=1.0,
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
)
opt = parser.parse_args()
title = "🎞️ Phylo Diffusion - Generating Fish Images Tool"
description = "Write the Species name to generate an image for.\n For Trait Masking: Specify the Level information as well"
def load_example(prompt, level, option, components):
components['prompt_input'].value = prompt
components['masking_level_input'].value = level
def setup_interface():
with gr.Blocks() as demo:
gr.Markdown("# Phylo Diffusion - Generating Fish Images Tool")
gr.Markdown("### Write the Species name to generate a fish image")
gr.Markdown("### Select one of the experiments: Trait Masking or Trait Swapping")
with gr.Row():
with gr.Column():
gr.Markdown("## Generate Images Based on Prompts")
gr.Markdown("Enter a prompt to generate an image:")
prompt_input = gr.Textbox(label="Species Name")
# Radio button to select experiment type, with no default selection
experiment_choice = gr.Radio(label="Select Experiment", choices=["Trait Masking", "Trait Swapping"], value=None)
# Trait Masking Inputs (hidden initially)
masking_level_input = gr.Dropdown(label="Select Ancestral Level", choices=["None", "Level 3", "Level 2"], value="None", visible=False)
# Trait Swapping Inputs (hidden initially)
swap_fish_name = gr.Textbox(label="Species Name to swap trait with:", visible=False)
swap_level_input = gr.Dropdown(label="Level of swapping", choices=["Level 3", "Level 2"], value="Level 3", visible=False)
submit_button = gr.Button("Generate")
gr.Markdown("## Phylogeny Tree")
architecture_image = "phylogeny_tree.jpg" # Update this with the actual path
gr.Image(value=architecture_image, label="Phylogeny Tree")
with gr.Column():
gr.Markdown("## Generated Image")
output_image = gr.Image(label="Generated Image", width=256, height=256)
# Place to put example buttons
gr.Markdown("## Select an example:")
examples = [
("Gambusia Affinis", "None", "", "Level 3"),
("Lepomis Auritus", "None", "", "Level 3"),
("Lepomis Auritus", "Level 3", "", "Level 3"),
("Noturus nocturnus", "None", "Notropis dorsalis", "Level 2")
]
for text, level, swap_text, swap_level in examples:
if level == "None" and swap_text == "":
button = gr.Button(f"Species: {text}")
experiment_type = "None"
elif level != "None":
button = gr.Button(f"Species: {text} | Masking: {level}")
experiment_type = "Trait Masking"
elif swap_text != "":
button = gr.Button(f"Species: {text} | Swapping with {swap_text} at {swap_level} ")
experiment_type = "Trait Swapping"
# Update radio button, fields and auto-trigger the "Generate" action
button.click(
fn=lambda text=text, level=level, swap_text=swap_text, swap_level=swap_level, experiment_type=experiment_type: (
text, level, swap_text, swap_level, experiment_type
),
inputs=[],
outputs=[prompt_input, masking_level_input, swap_fish_name, swap_level_input, experiment_choice]
).then(
fn=generate_image,
inputs=[prompt_input, masking_level_input, swap_fish_name, swap_level_input],
outputs=output_image
)
# Update visibility of inputs based on experiment selection
def update_inputs(experiment_type):
if experiment_type == "Trait Masking":
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
elif experiment_type == "Trait Swapping":
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
else:
# No experiment selected
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
experiment_choice.change(
fn=update_inputs,
inputs=[experiment_choice],
outputs=[masking_level_input, swap_fish_name, swap_level_input]
)
# Submit button functionality
submit_button.click(
fn=generate_image,
inputs=[prompt_input, masking_level_input, swap_fish_name, swap_level_input],
outputs=output_image
)
return demo
iface = setup_interface()
iface.launch(share=True)