File size: 11,915 Bytes
e1beb15
616c8f3
e1beb15
6226078
 
 
 
 
 
 
 
 
 
 
 
 
 
4a379ed
6226078
 
 
c81b721
8111260
6226078
 
 
 
 
 
 
 
 
 
c81b721
6226078
 
 
 
 
 
 
 
 
 
 
 
 
 
ed13e89
 
5c26769
7067143
c81b721
 
ed13e89
 
 
 
6226078
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c81b721
6226078
 
 
 
 
f83e924
6226078
 
 
 
148daee
6226078
 
148daee
 
6226078
ed13e89
6226078
 
 
 
 
 
 
 
 
 
 
 
 
 
e1beb15
6226078
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1beb15
 
 
6226078
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed13e89
 
 
 
 
b303c70
6226078
 
c81b721
 
ed13e89
c81b721
 
4a379ed
6226078
 
4a379ed
c81b721
6226078
4a379ed
b303c70
 
4a379ed
b303c70
 
4a379ed
b303c70
 
 
4a379ed
6226078
4a379ed
ed13e89
6226078
 
4a379ed
6226078
ed13e89
b303c70
4a379ed
ed13e89
 
 
b303c70
 
 
 
4a379ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed13e89
4a379ed
 
 
ed13e89
b303c70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6226078
 
b303c70
6226078
 
 
b303c70
 
6226078
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import torch
import gradio as gr

import argparse, os, sys, glob
import torch
import pickle
import numpy as np
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm, trange
from einops import rearrange
from torchvision.utils import make_grid

from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler

CACHE_DIR = "examples"

def load_model_from_config(config, ckpt, verbose=False):
    print(f"Loading model from {ckpt}")
    pl_sd = torch.load(ckpt, map_location="cpu") # TODO: change for GPU resources
    # pl_sd = torch.load(ckpt)#, map_location="cpu")
    sd = pl_sd["state_dict"]
    model = instantiate_from_config(config.model)
    m, u = model.load_state_dict(sd, strict=False)
    if len(m) > 0 and verbose:
        print("missing keys:")
        print(m)
    if len(u) > 0 and verbose:
        print("unexpected keys:")
        print(u)

    # model.cuda() # TODO: change for GPU resources
    model.eval()
    return model


def masking_embed(embedding, levels=1):
    """
    size of embedding - nx1xd, n: number of samples, d - 512
    replacing the last 128*levels from the embedding
    """
    replace_size = 128*levels
    random_noise = torch.randn(embedding.shape[0], embedding.shape[1], replace_size)
    embedding[:, :, -replace_size:] = random_noise
    return embedding


# LOAD MODEL GLOBALLY
ckpt_path = './model_files/fishes/epoch=000119.ckpt'
config_path = './model_files/fishes/2024-03-01T23-15-36-project.yaml'
config = OmegaConf.load(config_path)
model = load_model_from_config(config, ckpt_path) 

device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)

def generate_image(fish_name, masking_level_input,
                        swap_fish_name, swap_level_input):
    
    fish_name = fish_name.lower()


    label_to_class_mapping = {0: 'Alosa-chrysochloris', 1: 'Carassius-auratus', 2: 'Cyprinus-carpio', 3: 'Esox-americanus', 
    4: 'Gambusia-affinis', 5: 'Lepisosteus-osseus', 6: 'Lepisosteus-platostomus', 7: 'Lepomis-auritus', 8: 'Lepomis-cyanellus', 
    9: 'Lepomis-gibbosus', 10: 'Lepomis-gulosus', 11: 'Lepomis-humilis', 12: 'Lepomis-macrochirus', 13: 'Lepomis-megalotis', 
    14: 'Lepomis-microlophus', 15: 'Morone-chrysops', 16: 'Morone-mississippiensis', 17: 'Notropis-atherinoides', 
    18: 'Notropis-blennius', 19: 'Notropis-boops', 20: 'Notropis-buccatus', 21: 'Notropis-buchanani', 22: 'Notropis-dorsalis', 
    23: 'Notropis-hudsonius', 24: 'Notropis-leuciodus', 25: 'Notropis-nubilus', 26: 'Notropis-percobromus', 
    27: 'Notropis-stramineus', 28: 'Notropis-telescopus', 29: 'Notropis-texanus', 30: 'Notropis-volucellus', 
    31: 'Notropis-wickliffi', 32: 'Noturus-exilis', 33: 'Noturus-flavus', 34: 'Noturus-gyrinus', 35: 'Noturus-miurus', 
    36: 'Noturus-nocturnus', 37: 'Phenacobius-mirabilis'}

    def get_label_from_class(class_name):
        for key, value in label_to_class_mapping.items():
            if value == class_name:
                return key


    sampler = DDIMSampler(model)

    prompt = opt.prompt
    all_images = []
    labels = []

    class_to_node = './model_files/fishes/class_to_ancestral_label.pkl'
    with open(class_to_node, 'rb') as pickle_file:
        class_to_node_dict = pickle.load(pickle_file)

    class_to_node_dict =  {key.lower(): value for key, value in class_to_node_dict.items()}
    

    prompt = class_to_node_dict[fish_name]

    ### Trait Swapping
    if swap_fish_name:
        swap_fish_name = swap_fish_name.lower()
        swap_level = int(swap_level_input.split(" ")[-1]) - 1
        swap_fish = class_to_node_dict[swap_fish_name]

        swap_fish_split = swap_fish[0].split(',')
        fish_name_split = prompt[0].split(',')
        fish_name_split[swap_level] = swap_fish_split[swap_level]

        prompt = [','.join(fish_name_split)]

    all_samples=list()
    with torch.no_grad():
        with model.ema_scope():
            uc = None
            for n in trange(opt.n_iter, desc="Sampling"):

                all_prompts = opt.n_samples * (prompt)
                all_prompts = [tuple(all_prompts)]
                c = model.get_learned_conditioning({'class_to_node': all_prompts})
                if masking_level_input != "None":
                    masked_level = int(masking_level_input.split(" ")[-1])
                    masked_level = 4-masked_level
                    c = masking_embed(c, levels=masked_level)
                shape = [3, 64, 64]
                samples_ddim, _ = sampler.sample(S=opt.ddim_steps,
                                                conditioning=c,
                                                batch_size=opt.n_samples,
                                                shape=shape,
                                                verbose=False,
                                                unconditional_guidance_scale=opt.scale,
                                                unconditional_conditioning=uc,
                                                eta=opt.ddim_eta)

                x_samples_ddim = model.decode_first_stage(samples_ddim)
                x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0)

                all_samples.append(x_samples_ddim)

    ###### to make grid
    # additionally, save as grid
    grid = torch.stack(all_samples, 0)
    grid = rearrange(grid, 'n b c h w -> (n b) c h w')
    grid = make_grid(grid, nrow=opt.n_samples)

    # to image
    grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
    final_image = Image.fromarray(grid.astype(np.uint8))

    return final_image


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--prompt",
        type=str,
        nargs="?",
        default="a painting of a virus monster playing guitar",
        help="the prompt to render"
    )

    parser.add_argument(
        "--ddim_steps",
        type=int,
        default=200,
        help="number of ddim sampling steps",
    )

    parser.add_argument(
        "--ddim_eta",
        type=float,
        default=1.0,
        help="ddim eta (eta=0.0 corresponds to deterministic sampling",
    )
    parser.add_argument(
        "--n_iter",
        type=int,
        default=1,
        help="sample this often",
    )

    parser.add_argument(
        "--n_samples",
        type=int,
        default=1,
        help="how many samples to produce for the given prompt",
    )

    parser.add_argument(
        "--scale",
        type=float,
        # default=5.0,
        default=1.0,
        help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
    )
    opt = parser.parse_args()

    title = "🎞️ Phylo Diffusion - Generating Fish Images Tool"

    def load_example(prompt, level, option, components):
        components['prompt_input'].value = prompt
        components['masking_level_input'].value = level
    
    def setup_interface():
        with gr.Blocks() as demo:

            gr.Markdown("# Phylo-Diffusion: Generating Fish Images Tool")
            gr.Markdown("### Write the Species name to generate a fish image")
            gr.Markdown("### 1. Trait Masking: Specify the Level information to mask")
            gr.Markdown("### 2. Trait Swapping: Specify the species name to swap trait with and at what level")

            with gr.Row():
                with gr.Column():
                    # gr.Markdown("## Generate Images Based on Prompts")                    
                    gr.Markdown("**NOTE:** The demo is currently running on free CPU resources provided by Hugging Face, so it may take up to 10 minutes to generate an image. We're working on securing additional resources to speed up the process. Thank you for your patience!")
                    prompt_input = gr.Textbox(label="Species Name")

                    # Radio button to select experiment type, with no default selection
                    experiment_choice = gr.Radio(label="Select Experiment", choices=["Trait Masking", "Trait Swapping"], value=None)

                    # Trait Masking Inputs (hidden initially)
                    masking_level_input = gr.Dropdown(label="Select Ancestral Level", choices=["None", "Level 3", "Level 2"], value="None", visible=False)

                    # Trait Swapping Inputs (hidden initially)
                    swap_fish_name = gr.Textbox(label="Species Name to swap trait with:", visible=False)
                    swap_level_input = gr.Dropdown(label="Level of swapping", choices=["Level 3", "Level 2"], value="Level 3", visible=False)

                    submit_button = gr.Button("Generate")

                    gr.Markdown("## Phylogeny Tree")
                    architecture_image = "phylogeny_tree.jpg"  # Update this with the actual path
                    gr.Image(value=architecture_image, label="Phylogeny Tree")

                with gr.Column():
                    gr.Markdown("## Generated Image")
                    output_image = gr.Image(label="Generated Image", width=256, height=256)

                    # Place to put example buttons
                    gr.Markdown("## Select an example:")
                    examples = [
                        ("Gambusia Affinis", "None", "", "Level 3"),
                        ("Lepomis Auritus", "Level 3", "", "Level 3"),
                        ("Noturus nocturnus", "None", "Notropis dorsalis", "Level 2")
                    ]

                    example_images = [
                        "eg1.webp",
                        "eg2.webp",
                        "eg3.webp",
                    ]

                    for idx, (species, masking, swap_species, swap_level) in enumerate(examples):
                        # Descriptive button text
                        if masking != "None" and swap_species == "":
                            button_text = f"Species: {species} | Masking: {masking}"
                        elif swap_species:
                            button_text = f"Species: {species} | Swapping with {swap_species} at {swap_level}"
                        else:
                            button_text = f"Species: {species}"

                        # Create button
                        button = gr.Button(button_text)

                        # Attach the function to load cached images
                        button.click(
                            fn=lambda index=idx: os.path.join(CACHE_DIR, example_images[index]),
                            inputs=[],  # No inputs required
                            outputs=output_image  # Display the cached image
                        )
    
            # Update visibility of inputs based on experiment selection
            def update_inputs(experiment_type):
                if experiment_type == "Trait Masking":
                    return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
                elif experiment_type == "Trait Swapping":
                    return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
                else:
                    # No experiment selected
                    return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
    
            experiment_choice.change(
                fn=update_inputs,
                inputs=[experiment_choice],
                outputs=[masking_level_input, swap_fish_name, swap_level_input]
            )
    
            # Submit button functionality
            submit_button.click(
                fn=generate_image,
                inputs=[prompt_input, masking_level_input, swap_fish_name, swap_level_input],
                outputs=output_image
            )
    
        return demo
        

    iface = setup_interface()
    iface.launch(share=True)