Spaces:
Sleeping
Sleeping
File size: 11,915 Bytes
e1beb15 616c8f3 e1beb15 6226078 4a379ed 6226078 c81b721 8111260 6226078 c81b721 6226078 ed13e89 5c26769 7067143 c81b721 ed13e89 6226078 c81b721 6226078 f83e924 6226078 148daee 6226078 148daee 6226078 ed13e89 6226078 e1beb15 6226078 e1beb15 6226078 ed13e89 b303c70 6226078 c81b721 ed13e89 c81b721 4a379ed 6226078 4a379ed c81b721 6226078 4a379ed b303c70 4a379ed b303c70 4a379ed b303c70 4a379ed 6226078 4a379ed ed13e89 6226078 4a379ed 6226078 ed13e89 b303c70 4a379ed ed13e89 b303c70 4a379ed ed13e89 4a379ed ed13e89 b303c70 6226078 b303c70 6226078 b303c70 6226078 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import torch
import gradio as gr
import argparse, os, sys, glob
import torch
import pickle
import numpy as np
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm, trange
from einops import rearrange
from torchvision.utils import make_grid
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
CACHE_DIR = "examples"
def load_model_from_config(config, ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu") # TODO: change for GPU resources
# pl_sd = torch.load(ckpt)#, map_location="cpu")
sd = pl_sd["state_dict"]
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
# model.cuda() # TODO: change for GPU resources
model.eval()
return model
def masking_embed(embedding, levels=1):
"""
size of embedding - nx1xd, n: number of samples, d - 512
replacing the last 128*levels from the embedding
"""
replace_size = 128*levels
random_noise = torch.randn(embedding.shape[0], embedding.shape[1], replace_size)
embedding[:, :, -replace_size:] = random_noise
return embedding
# LOAD MODEL GLOBALLY
ckpt_path = './model_files/fishes/epoch=000119.ckpt'
config_path = './model_files/fishes/2024-03-01T23-15-36-project.yaml'
config = OmegaConf.load(config_path)
model = load_model_from_config(config, ckpt_path)
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)
def generate_image(fish_name, masking_level_input,
swap_fish_name, swap_level_input):
fish_name = fish_name.lower()
label_to_class_mapping = {0: 'Alosa-chrysochloris', 1: 'Carassius-auratus', 2: 'Cyprinus-carpio', 3: 'Esox-americanus',
4: 'Gambusia-affinis', 5: 'Lepisosteus-osseus', 6: 'Lepisosteus-platostomus', 7: 'Lepomis-auritus', 8: 'Lepomis-cyanellus',
9: 'Lepomis-gibbosus', 10: 'Lepomis-gulosus', 11: 'Lepomis-humilis', 12: 'Lepomis-macrochirus', 13: 'Lepomis-megalotis',
14: 'Lepomis-microlophus', 15: 'Morone-chrysops', 16: 'Morone-mississippiensis', 17: 'Notropis-atherinoides',
18: 'Notropis-blennius', 19: 'Notropis-boops', 20: 'Notropis-buccatus', 21: 'Notropis-buchanani', 22: 'Notropis-dorsalis',
23: 'Notropis-hudsonius', 24: 'Notropis-leuciodus', 25: 'Notropis-nubilus', 26: 'Notropis-percobromus',
27: 'Notropis-stramineus', 28: 'Notropis-telescopus', 29: 'Notropis-texanus', 30: 'Notropis-volucellus',
31: 'Notropis-wickliffi', 32: 'Noturus-exilis', 33: 'Noturus-flavus', 34: 'Noturus-gyrinus', 35: 'Noturus-miurus',
36: 'Noturus-nocturnus', 37: 'Phenacobius-mirabilis'}
def get_label_from_class(class_name):
for key, value in label_to_class_mapping.items():
if value == class_name:
return key
sampler = DDIMSampler(model)
prompt = opt.prompt
all_images = []
labels = []
class_to_node = './model_files/fishes/class_to_ancestral_label.pkl'
with open(class_to_node, 'rb') as pickle_file:
class_to_node_dict = pickle.load(pickle_file)
class_to_node_dict = {key.lower(): value for key, value in class_to_node_dict.items()}
prompt = class_to_node_dict[fish_name]
### Trait Swapping
if swap_fish_name:
swap_fish_name = swap_fish_name.lower()
swap_level = int(swap_level_input.split(" ")[-1]) - 1
swap_fish = class_to_node_dict[swap_fish_name]
swap_fish_split = swap_fish[0].split(',')
fish_name_split = prompt[0].split(',')
fish_name_split[swap_level] = swap_fish_split[swap_level]
prompt = [','.join(fish_name_split)]
all_samples=list()
with torch.no_grad():
with model.ema_scope():
uc = None
for n in trange(opt.n_iter, desc="Sampling"):
all_prompts = opt.n_samples * (prompt)
all_prompts = [tuple(all_prompts)]
c = model.get_learned_conditioning({'class_to_node': all_prompts})
if masking_level_input != "None":
masked_level = int(masking_level_input.split(" ")[-1])
masked_level = 4-masked_level
c = masking_embed(c, levels=masked_level)
shape = [3, 64, 64]
samples_ddim, _ = sampler.sample(S=opt.ddim_steps,
conditioning=c,
batch_size=opt.n_samples,
shape=shape,
verbose=False,
unconditional_guidance_scale=opt.scale,
unconditional_conditioning=uc,
eta=opt.ddim_eta)
x_samples_ddim = model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0)
all_samples.append(x_samples_ddim)
###### to make grid
# additionally, save as grid
grid = torch.stack(all_samples, 0)
grid = rearrange(grid, 'n b c h w -> (n b) c h w')
grid = make_grid(grid, nrow=opt.n_samples)
# to image
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
final_image = Image.fromarray(grid.astype(np.uint8))
return final_image
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--prompt",
type=str,
nargs="?",
default="a painting of a virus monster playing guitar",
help="the prompt to render"
)
parser.add_argument(
"--ddim_steps",
type=int,
default=200,
help="number of ddim sampling steps",
)
parser.add_argument(
"--ddim_eta",
type=float,
default=1.0,
help="ddim eta (eta=0.0 corresponds to deterministic sampling",
)
parser.add_argument(
"--n_iter",
type=int,
default=1,
help="sample this often",
)
parser.add_argument(
"--n_samples",
type=int,
default=1,
help="how many samples to produce for the given prompt",
)
parser.add_argument(
"--scale",
type=float,
# default=5.0,
default=1.0,
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
)
opt = parser.parse_args()
title = "🎞️ Phylo Diffusion - Generating Fish Images Tool"
def load_example(prompt, level, option, components):
components['prompt_input'].value = prompt
components['masking_level_input'].value = level
def setup_interface():
with gr.Blocks() as demo:
gr.Markdown("# Phylo-Diffusion: Generating Fish Images Tool")
gr.Markdown("### Write the Species name to generate a fish image")
gr.Markdown("### 1. Trait Masking: Specify the Level information to mask")
gr.Markdown("### 2. Trait Swapping: Specify the species name to swap trait with and at what level")
with gr.Row():
with gr.Column():
# gr.Markdown("## Generate Images Based on Prompts")
gr.Markdown("**NOTE:** The demo is currently running on free CPU resources provided by Hugging Face, so it may take up to 10 minutes to generate an image. We're working on securing additional resources to speed up the process. Thank you for your patience!")
prompt_input = gr.Textbox(label="Species Name")
# Radio button to select experiment type, with no default selection
experiment_choice = gr.Radio(label="Select Experiment", choices=["Trait Masking", "Trait Swapping"], value=None)
# Trait Masking Inputs (hidden initially)
masking_level_input = gr.Dropdown(label="Select Ancestral Level", choices=["None", "Level 3", "Level 2"], value="None", visible=False)
# Trait Swapping Inputs (hidden initially)
swap_fish_name = gr.Textbox(label="Species Name to swap trait with:", visible=False)
swap_level_input = gr.Dropdown(label="Level of swapping", choices=["Level 3", "Level 2"], value="Level 3", visible=False)
submit_button = gr.Button("Generate")
gr.Markdown("## Phylogeny Tree")
architecture_image = "phylogeny_tree.jpg" # Update this with the actual path
gr.Image(value=architecture_image, label="Phylogeny Tree")
with gr.Column():
gr.Markdown("## Generated Image")
output_image = gr.Image(label="Generated Image", width=256, height=256)
# Place to put example buttons
gr.Markdown("## Select an example:")
examples = [
("Gambusia Affinis", "None", "", "Level 3"),
("Lepomis Auritus", "Level 3", "", "Level 3"),
("Noturus nocturnus", "None", "Notropis dorsalis", "Level 2")
]
example_images = [
"eg1.webp",
"eg2.webp",
"eg3.webp",
]
for idx, (species, masking, swap_species, swap_level) in enumerate(examples):
# Descriptive button text
if masking != "None" and swap_species == "":
button_text = f"Species: {species} | Masking: {masking}"
elif swap_species:
button_text = f"Species: {species} | Swapping with {swap_species} at {swap_level}"
else:
button_text = f"Species: {species}"
# Create button
button = gr.Button(button_text)
# Attach the function to load cached images
button.click(
fn=lambda index=idx: os.path.join(CACHE_DIR, example_images[index]),
inputs=[], # No inputs required
outputs=output_image # Display the cached image
)
# Update visibility of inputs based on experiment selection
def update_inputs(experiment_type):
if experiment_type == "Trait Masking":
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
elif experiment_type == "Trait Swapping":
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
else:
# No experiment selected
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
experiment_choice.change(
fn=update_inputs,
inputs=[experiment_choice],
outputs=[masking_level_input, swap_fish_name, swap_level_input]
)
# Submit button functionality
submit_button.click(
fn=generate_image,
inputs=[prompt_input, masking_level_input, swap_fish_name, swap_level_input],
outputs=output_image
)
return demo
iface = setup_interface()
iface.launch(share=True) |