import os import random import torch import torch.nn.functional as F import torch.utils.data from torch import LongTensor from tqdm import tqdm import torchaudio from pypinyin import Style, lazy_pinyin from ttts.gpt.voice_tokenizer import VoiceBpeTokenizer from ttts.utils.infer_utils import load_model import json import os def read_jsonl(path): with open(path, 'r') as f: json_str = f.read() data_list = [] for line in json_str.splitlines(): data = json.loads(line) data_list.append(data) return data_list def write_jsonl(path, all_paths): with open(path,'w', encoding='utf-8') as file: for item in all_paths: json.dump(item, file, ensure_ascii=False) file.write('\n') class HifiGANDataset(torch.utils.data.Dataset): def __init__(self, opt): self.jsonl_path = opt['dataset']['path'] self.audiopaths_and_text = read_jsonl(self.jsonl_path) self.tok = VoiceBpeTokenizer('ttts/gpt/gpt_tts_tokenizer.json') def __getitem__(self, index): # Fetch text and add start/stop tokens. audiopath_and_text = self.audiopaths_and_text[index] audiopath, text = audiopath_and_text['path'], audiopath_and_text['text'] text = ' '.join(lazy_pinyin(text, style=Style.TONE3, neutral_tone_with_five=True)) text = self.tok.encode(text) text_tokens = LongTensor(text) wav,sr = torchaudio.load(audiopath) if wav.shape[0]>1: wav = wav[0].unsqueeze(0) if sr!=24000: wav = torchaudio.transforms.Resample(sr,24000)(wav) quant_path = audiopath + '.melvq.pth' mel_codes = LongTensor(torch.load(quant_path)[0]) split = random.randint(int(wav.shape[1]//3), int(wav.shape[1]//3*2)) if random.random()>0.5: wav_refer = wav[:,split:] else: wav_refer = wav[:,:split] if wav_refer.shape[1]>(50*1024): wav_refer = wav_refer[:,:50*1024] #text_token mel_codes if wav.shape[1]>102400: wav = wav[:,:102400] mel_codes = mel_codes[:100] return text_tokens, mel_codes, wav, wav_refer def __len__(self): return len(self.audiopaths_and_text) class HiFiGANCollater(): def __init__(self): pass def __call__(self, batch): batch = [x for x in batch if x is not None] if len(batch)==0: return None text_lens = [len(x[0]) for x in batch] max_text_len = max(text_lens) mel_code_lens = [len(x[1]) for x in batch] max_mel_code_len = max(mel_code_lens) wav_lens = [x[2].shape[1] for x in batch] max_wav_len = max(wav_lens) wav_refer_lens = [x[3].shape[1] for x in batch] max_wav_refer_len = max(wav_refer_lens) texts = [] mel_codes = [] wavs = [] wav_refers = [] for b in batch: text_token, mel_code, wav, wav_refer = b texts.append(F.pad(text_token,(0,max_text_len-len(text_token)), value=0)) mel_codes.append(F.pad(mel_code,(0,max_mel_code_len-len(mel_code)), value=0)) wavs.append(F.pad(wav,(0, max_wav_len-wav.shape[1]), value=0)) wav_refers.append(F.pad(wav_refer,(0, max_wav_refer_len-wav_refer.shape[1]), value=0)) padded_text = torch.stack(texts) padded_mel_code = torch.stack(mel_codes) padded_wav = torch.stack(wavs) padded_wav_refer = torch.stack(wav_refers) return { 'padded_text': padded_text, 'padded_mel_code': padded_mel_code, 'padded_wav': padded_wav, 'padded_wav_refer':padded_wav_refer, } if __name__ == '__main__': params = { 'mode': 'gpt_tts', 'path': 'E:\\audio\\LJSpeech-1.1\\ljs_audio_text_train_filelist.txt', 'phase': 'train', 'n_workers': 0, 'batch_size': 16, 'mel_vocab_size': 512, } cfg = json.load(open('ttts/hifigan/config.json')) ds = HifiGANDataset(cfg) dl = torch.utils.data.DataLoader(ds, **cfg['dataloader'], collate_fn=HiFiGANCollater()) i = 0 m = [] max_text = 0 max_mel = 0 for b in tqdm(dl): break