# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional import torch.nn.functional as F from torch import nn class LoRALinearLayer(nn.Module): def __init__(self, in_features, out_features, rank=4, network_alpha=None, device=None, dtype=None): super().__init__() if rank > min(in_features, out_features): raise ValueError(f"LoRA rank {rank} must be less or equal than {min(in_features, out_features)}") self.down = nn.Linear(in_features, rank, bias=False, device=device, dtype=dtype) self.up = nn.Linear(rank, out_features, bias=False, device=device, dtype=dtype) # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script. # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning self.network_alpha = network_alpha self.rank = rank nn.init.normal_(self.down.weight, std=1 / rank) nn.init.zeros_(self.up.weight) def forward(self, hidden_states): orig_dtype = hidden_states.dtype dtype = self.down.weight.dtype down_hidden_states = self.down(hidden_states.to(dtype)) up_hidden_states = self.up(down_hidden_states) if self.network_alpha is not None: up_hidden_states *= self.network_alpha / self.rank return up_hidden_states.to(orig_dtype) class LoRAConv1dLayer(nn.Module): def __init__( self, in_features, out_features, rank=4, kernel_size=(1, 1), stride=(1, 1), padding=0, network_alpha=None ): super().__init__() if rank > min(in_features, out_features): raise ValueError(f"LoRA rank {rank} must be less or equal than {min(in_features, out_features)}") self.down = nn.Conv1d(in_features, rank, kernel_size=kernel_size, stride=stride, padding=padding, bias=False) # according to the official kohya_ss trainer kernel_size are always fixed for the up layer # # see: https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L129 self.up = nn.Conv1d(rank, out_features, kernel_size=(1, 1), stride=(1, 1), bias=False) # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script. # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning self.network_alpha = network_alpha self.rank = rank nn.init.normal_(self.down.weight, std=1 / rank) nn.init.zeros_(self.up.weight) def forward(self, hidden_states): orig_dtype = hidden_states.dtype dtype = self.down.weight.dtype down_hidden_states = self.down(hidden_states.to(dtype)) up_hidden_states = self.up(down_hidden_states) if self.network_alpha is not None: up_hidden_states *= self.network_alpha / self.rank return up_hidden_states.to(orig_dtype) class LoRACompatibleConv(nn.Conv1d): """ A convolutional layer that can be used with LoRA. """ def __init__(self, *args, lora_layer: Optional[LoRAConv1dLayer] = None, **kwargs): super().__init__(*args, **kwargs) self.lora_layer = lora_layer def set_lora_layer(self, lora_layer: Optional[LoRAConv1dLayer]): self.lora_layer = lora_layer def forward(self, x): if self.lora_layer is None: # make sure to the functional Conv2D function as otherwise torch.compile's graph will break # see: https://github.com/huggingface/diffusers/pull/4315 return F.conv1d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups) else: return super().forward(x) + self.lora_layer(x) class LoRACompatibleLinear(nn.Linear): """ A Linear layer that can be used with LoRA. """ def __init__(self, *args, lora_layer: Optional[LoRALinearLayer] = None, **kwargs): super().__init__(*args, **kwargs) self.lora_layer = lora_layer def set_lora_layer(self, lora_layer: Optional[LoRAConv1dLayer]): self.lora_layer = lora_layer def forward(self, x): if self.lora_layer is None: return super().forward(x) else: return super().forward(x) + self.lora_layer(x)