Spaces:
Sleeping
Sleeping
import copy | |
from datetime import datetime | |
import json | |
from pathlib import Path | |
from torch.utils.tensorboard import SummaryWriter | |
from tqdm import tqdm | |
from ttts.utils.utils import EMA, clean_checkpoints, plot_spectrogram_to_numpy, summarize, update_moving_average | |
from ttts.vqvae.dataset import PreprocessedMelDataset | |
import torch | |
import os | |
from torch.utils.data import DataLoader | |
from torch import nn | |
from torch.optim import AdamW | |
from accelerate import Accelerator | |
from ttts.vqvae.xtts_dvae import DiscreteVAE | |
def set_requires_grad(model, val): | |
for p in model.parameters(): | |
p.requires_grad = val | |
def get_grad_norm(model): | |
total_norm = 0 | |
for name,p in model.named_parameters(): | |
try: | |
param_norm = p.grad.data.norm(2) | |
total_norm += param_norm.item() ** 2 | |
except: | |
print(name) | |
total_norm = total_norm ** (1. / 2) | |
return total_norm | |
def cycle(dl): | |
while True: | |
for data in dl: | |
yield data | |
class Trainer(object): | |
def __init__(self, cfg_path='ttts/vqvae/config.json'): | |
self.accelerator = Accelerator() | |
self.cfg = json.load(open(cfg_path)) | |
self.vqvae = DiscreteVAE(**self.cfg['vqvae']) | |
self.dataset = PreprocessedMelDataset(self.cfg) | |
self.dataloader = DataLoader(self.dataset, **self.cfg['dataloader']) | |
self.train_steps = self.cfg['train']['train_steps'] | |
self.val_freq = self.cfg['train']['val_freq'] | |
if self.accelerator.is_main_process: | |
# self.ema_model = self._get_target_encoder(self.vqvae).to(self.accelerator.device) | |
now = datetime.now() | |
self.logs_folder = Path(self.cfg['train']['logs_folder']+'/'+now.strftime("%Y-%m-%d-%H-%M-%S")) | |
self.logs_folder.mkdir(exist_ok = True, parents=True) | |
self.ema_updater = EMA(0.999) | |
self.optimizer = AdamW(self.vqvae.parameters(),lr=3e-4, betas=(0.9, 0.9999), weight_decay=0.01) | |
self.vqvae, self.dataloader, self.optimizer = self.accelerator.prepare(self.vqvae, self.dataloader, self.optimizer) | |
self.dataloader = cycle(self.dataloader) | |
self.step=0 | |
self.gradient_accumulate_every=1 | |
def _get_target_encoder(self, model): | |
target_encoder = copy.deepcopy(model) | |
set_requires_grad(target_encoder, False) | |
for p in target_encoder.parameters(): | |
p.DO_NOT_TRAIN = True | |
return target_encoder | |
def save(self, milestone): | |
if not self.accelerator.is_local_main_process: | |
return | |
data = { | |
'step': self.step, | |
'model': self.accelerator.get_state_dict(self.vqvae), | |
} | |
torch.save(data, str(self.logs_folder / f'model-{milestone}.pt')) | |
def load(self, model_path): | |
accelerator = self.accelerator | |
device = accelerator.device | |
data = torch.load(model_path, map_location=device) | |
state_dict = data['model'] | |
self.step = data['step'] | |
vqvae = accelerator.unwrap_model(self.vqvae) | |
vqvae.load_state_dict(state_dict) | |
# if self.accelerator.is_local_main_process: | |
# self.ema_model.load_state_dict(state_dict) | |
def train(self): | |
accelerator = self.accelerator | |
device = accelerator.device | |
if accelerator.is_main_process: | |
writer = SummaryWriter(log_dir=self.logs_folder) | |
with tqdm(initial = self.step, total = self.train_steps, disable = not accelerator.is_main_process) as pbar: | |
while self.step < self.train_steps: | |
total_loss = 0. | |
for _ in range(self.gradient_accumulate_every): | |
mel = next(self.dataloader) | |
mel = mel.to(device).squeeze(1) | |
with self.accelerator.autocast(): | |
recon_loss, commitment_loss, mel_recon = self.vqvae(mel) | |
recon_loss = torch.mean(recon_loss) | |
loss = recon_loss+0.25*commitment_loss | |
loss = loss / self.gradient_accumulate_every | |
total_loss += loss.item() | |
self.accelerator.backward(loss) | |
grad_norm = get_grad_norm(self.vqvae) | |
accelerator.clip_grad_norm_(self.vqvae.parameters(), 1.0) | |
pbar.set_description(f'loss: {total_loss:.4f}') | |
accelerator.wait_for_everyone() | |
self.optimizer.step() | |
self.optimizer.zero_grad() | |
accelerator.wait_for_everyone() | |
# if accelerator.is_main_process: | |
# update_moving_average(self.ema_updater,self.ema_model,self.vqvae) | |
if accelerator.is_main_process and self.step % self.val_freq == 0: | |
with torch.no_grad(): | |
# self.ema_model.eval() | |
eval_model = self.accelerator.unwrap_model(self.vqvae) | |
eval_model.eval() | |
# mel_recon_ema = self.ema_model.infer(mel)[0] | |
mel_recon_ema = eval_model.infer(mel)[0] | |
eval_model.train() | |
scalar_dict = {"loss": total_loss, "loss_mel":recon_loss, "loss_commitment":commitment_loss, "loss/grad": grad_norm} | |
image_dict = { | |
"all/spec": plot_spectrogram_to_numpy(mel[0, :, :].detach().unsqueeze(-1).cpu()), | |
"all/spec_pred": plot_spectrogram_to_numpy(mel_recon[0, :, :].detach().unsqueeze(-1).cpu()), | |
"all/spec_pred_ema": plot_spectrogram_to_numpy(mel_recon_ema[0, :, :].detach().unsqueeze(-1).cpu()), | |
} | |
summarize( | |
writer=writer, | |
global_step=self.step, | |
images=image_dict, | |
scalars=scalar_dict | |
) | |
if accelerator.is_main_process and self.step % self.cfg['train']['save_freq']==0: | |
keep_ckpts = self.cfg['train']['keep_ckpts'] | |
if keep_ckpts > 0: | |
clean_checkpoints(path_to_models=self.logs_folder, n_ckpts_to_keep=keep_ckpts, sort_by_time=True) | |
self.save(self.step//1000) | |
self.step += 1 | |
pbar.update(1) | |
accelerator.print('training complete') | |
if __name__ == '__main__': | |
trainer = Trainer() | |
# trainer.load('~/tortoise_plus_zh/ttts/vqvae/logs/2023-11-04-00-25-39/model-14.pt') | |
trainer.train() | |