TTTS / ttts /hifigan /losses.py
mrfakename's picture
Add source code
4ee33aa
raw
history blame
16.2 kB
from typing import Dict, Union
import torch
from torch import nn
from torch.nn import functional as F
import librosa
class TorchSTFT(nn.Module): # pylint: disable=abstract-method
"""Some of the audio processing funtions using Torch for faster batch processing.
Args:
n_fft (int):
FFT window size for STFT.
hop_length (int):
number of frames between STFT columns.
win_length (int, optional):
STFT window length.
pad_wav (bool, optional):
If True pad the audio with (n_fft - hop_length) / 2). Defaults to False.
window (str, optional):
The name of a function to create a window tensor that is applied/multiplied to each frame/window. Defaults to "hann_window"
sample_rate (int, optional):
target audio sampling rate. Defaults to None.
mel_fmin (int, optional):
minimum filter frequency for computing melspectrograms. Defaults to None.
mel_fmax (int, optional):
maximum filter frequency for computing melspectrograms. Defaults to None.
n_mels (int, optional):
number of melspectrogram dimensions. Defaults to None.
use_mel (bool, optional):
If True compute the melspectrograms otherwise. Defaults to False.
do_amp_to_db_linear (bool, optional):
enable/disable amplitude to dB conversion of linear spectrograms. Defaults to False.
spec_gain (float, optional):
gain applied when converting amplitude to DB. Defaults to 1.0.
power (float, optional):
Exponent for the magnitude spectrogram, e.g., 1 for energy, 2 for power, etc. Defaults to None.
use_htk (bool, optional):
Use HTK formula in mel filter instead of Slaney.
mel_norm (None, 'slaney', or number, optional):
If 'slaney', divide the triangular mel weights by the width of the mel band
(area normalization).
If numeric, use `librosa.util.normalize` to normalize each filter by to unit l_p norm.
See `librosa.util.normalize` for a full description of supported norm values
(including `+-np.inf`).
Otherwise, leave all the triangles aiming for a peak value of 1.0. Defaults to "slaney".
"""
def __init__(
self,
n_fft,
hop_length,
win_length,
pad_wav=False,
window="hann_window",
sample_rate=None,
mel_fmin=0,
mel_fmax=None,
n_mels=80,
use_mel=False,
do_amp_to_db=False,
spec_gain=1.0,
power=None,
use_htk=False,
mel_norm="slaney",
normalized=False,
):
super().__init__()
self.n_fft = n_fft
self.hop_length = hop_length
self.win_length = win_length
self.pad_wav = pad_wav
self.sample_rate = sample_rate
self.mel_fmin = mel_fmin
self.mel_fmax = mel_fmax
self.n_mels = n_mels
self.use_mel = use_mel
self.do_amp_to_db = do_amp_to_db
self.spec_gain = spec_gain
self.power = power
self.use_htk = use_htk
self.mel_norm = mel_norm
self.window = nn.Parameter(getattr(torch, window)(win_length), requires_grad=False)
self.mel_basis = None
self.normalized = normalized
if use_mel:
self._build_mel_basis()
def __call__(self, x):
"""Compute spectrogram frames by torch based stft.
Args:
x (Tensor): input waveform
Returns:
Tensor: spectrogram frames.
Shapes:
x: [B x T] or [:math:`[B, 1, T]`]
"""
if x.ndim == 2:
x = x.unsqueeze(1)
if self.pad_wav:
padding = int((self.n_fft - self.hop_length) / 2)
x = torch.nn.functional.pad(x, (padding, padding), mode="reflect")
# B x D x T x 2
o = torch.stft(
x.squeeze(1),
self.n_fft,
self.hop_length,
self.win_length,
self.window.to(x.device),
center=True,
pad_mode="reflect", # compatible with audio.py
normalized=self.normalized,
onesided=True,
return_complex=False,
)
M = o[:, :, :, 0]
P = o[:, :, :, 1]
S = torch.sqrt(torch.clamp(M**2 + P**2, min=1e-8))
if self.power is not None:
S = S**self.power
if self.use_mel:
S = torch.matmul(self.mel_basis.to(x), S)
if self.do_amp_to_db:
S = self._amp_to_db(S, spec_gain=self.spec_gain)
return S
def _build_mel_basis(self):
mel_basis = librosa.filters.mel(
sr=self.sample_rate,
n_fft=self.n_fft,
n_mels=self.n_mels,
fmin=self.mel_fmin,
fmax=self.mel_fmax,
htk=self.use_htk,
norm=self.mel_norm,
)
self.mel_basis = torch.from_numpy(mel_basis).float()
@staticmethod
def _amp_to_db(x, spec_gain=1.0):
return torch.log(torch.clamp(x, min=1e-5) * spec_gain)
@staticmethod
def _db_to_amp(x, spec_gain=1.0):
return torch.exp(x) / spec_gain
#################################
# GENERATOR LOSSES
#################################
class STFTLoss(nn.Module):
"""STFT loss. Input generate and real waveforms are converted
to spectrograms compared with L1 and Spectral convergence losses.
It is from ParallelWaveGAN paper https://arxiv.org/pdf/1910.11480.pdf"""
def __init__(self, n_fft, hop_length, win_length):
super().__init__()
self.n_fft = n_fft
self.hop_length = hop_length
self.win_length = win_length
self.stft = TorchSTFT(n_fft, hop_length, win_length)
def forward(self, y_hat, y):
y_hat_M = self.stft(y_hat)
y_M = self.stft(y)
# magnitude loss
loss_mag = F.l1_loss(torch.log(y_M), torch.log(y_hat_M))
# spectral convergence loss
loss_sc = torch.norm(y_M - y_hat_M, p="fro") / torch.norm(y_M, p="fro")
return loss_mag, loss_sc
class MultiScaleSTFTLoss(torch.nn.Module):
"""Multi-scale STFT loss. Input generate and real waveforms are converted
to spectrograms compared with L1 and Spectral convergence losses.
It is from ParallelWaveGAN paper https://arxiv.org/pdf/1910.11480.pdf"""
def __init__(self, n_ffts=(1024, 2048, 512), hop_lengths=(120, 240, 50), win_lengths=(600, 1200, 240)):
super().__init__()
self.loss_funcs = torch.nn.ModuleList()
for n_fft, hop_length, win_length in zip(n_ffts, hop_lengths, win_lengths):
self.loss_funcs.append(STFTLoss(n_fft, hop_length, win_length))
def forward(self, y_hat, y):
N = len(self.loss_funcs)
loss_sc = 0
loss_mag = 0
for f in self.loss_funcs:
lm, lsc = f(y_hat, y)
loss_mag += lm
loss_sc += lsc
loss_sc /= N
loss_mag /= N
return loss_mag, loss_sc
class L1SpecLoss(nn.Module):
"""L1 Loss over Spectrograms as described in HiFiGAN paper https://arxiv.org/pdf/2010.05646.pdf"""
def __init__(
self, sample_rate, n_fft, hop_length, win_length, mel_fmin=None, mel_fmax=None, n_mels=None, use_mel=True
):
super().__init__()
self.use_mel = use_mel
self.stft = TorchSTFT(
n_fft,
hop_length,
win_length,
sample_rate=sample_rate,
mel_fmin=mel_fmin,
mel_fmax=mel_fmax,
n_mels=n_mels,
use_mel=use_mel,
)
def forward(self, y_hat, y):
y_hat_M = self.stft(y_hat)
y_M = self.stft(y)
# magnitude loss
loss_mag = F.l1_loss(torch.log(y_M), torch.log(y_hat_M))
return loss_mag
class MultiScaleSubbandSTFTLoss(MultiScaleSTFTLoss):
"""Multiscale STFT loss for multi band model outputs.
From MultiBand-MelGAN paper https://arxiv.org/abs/2005.05106"""
# pylint: disable=no-self-use
def forward(self, y_hat, y):
y_hat = y_hat.view(-1, 1, y_hat.shape[2])
y = y.view(-1, 1, y.shape[2])
return super().forward(y_hat.squeeze(1), y.squeeze(1))
class MSEGLoss(nn.Module):
"""Mean Squared Generator Loss"""
# pylint: disable=no-self-use
def forward(self, score_real):
loss_fake = F.mse_loss(score_real, score_real.new_ones(score_real.shape))
return loss_fake
class HingeGLoss(nn.Module):
"""Hinge Discriminator Loss"""
# pylint: disable=no-self-use
def forward(self, score_real):
# TODO: this might be wrong
loss_fake = torch.mean(F.relu(1.0 - score_real))
return loss_fake
##################################
# DISCRIMINATOR LOSSES
##################################
class MSEDLoss(nn.Module):
"""Mean Squared Discriminator Loss"""
def __init__(
self,
):
super().__init__()
self.loss_func = nn.MSELoss()
# pylint: disable=no-self-use
def forward(self, score_fake, score_real):
loss_real = self.loss_func(score_real, score_real.new_ones(score_real.shape))
loss_fake = self.loss_func(score_fake, score_fake.new_zeros(score_fake.shape))
loss_d = loss_real + loss_fake
return loss_d, loss_real, loss_fake
class HingeDLoss(nn.Module):
"""Hinge Discriminator Loss"""
# pylint: disable=no-self-use
def forward(self, score_fake, score_real):
loss_real = torch.mean(F.relu(1.0 - score_real))
loss_fake = torch.mean(F.relu(1.0 + score_fake))
loss_d = loss_real + loss_fake
return loss_d, loss_real, loss_fake
class MelganFeatureLoss(nn.Module):
def __init__(
self,
):
super().__init__()
self.loss_func = nn.L1Loss()
# pylint: disable=no-self-use
def forward(self, fake_feats, real_feats):
loss_feats = 0
num_feats = 0
for idx, _ in enumerate(fake_feats):
for fake_feat, real_feat in zip(fake_feats[idx], real_feats[idx]):
loss_feats += self.loss_func(fake_feat, real_feat)
num_feats += 1
loss_feats = loss_feats / num_feats
return loss_feats
#####################################
# LOSS WRAPPERS
#####################################
def _apply_G_adv_loss(scores_fake, loss_func):
"""Compute G adversarial loss function
and normalize values"""
adv_loss = 0
if isinstance(scores_fake, list):
for score_fake in scores_fake:
fake_loss = loss_func(score_fake)
adv_loss += fake_loss
adv_loss /= len(scores_fake)
else:
fake_loss = loss_func(scores_fake)
adv_loss = fake_loss
return adv_loss
def _apply_D_loss(scores_fake, scores_real, loss_func):
"""Compute D loss func and normalize loss values"""
loss = 0
real_loss = 0
fake_loss = 0
if isinstance(scores_fake, list):
# multi-scale loss
for score_fake, score_real in zip(scores_fake, scores_real):
total_loss, real_loss_, fake_loss_ = loss_func(score_fake=score_fake, score_real=score_real)
loss += total_loss
real_loss += real_loss_
fake_loss += fake_loss_
# normalize loss values with number of scales (discriminators)
loss /= len(scores_fake)
real_loss /= len(scores_real)
fake_loss /= len(scores_fake)
else:
# single scale loss
total_loss, real_loss, fake_loss = loss_func(scores_fake, scores_real)
loss = total_loss
return loss, real_loss, fake_loss
##################################
# MODEL LOSSES
##################################
class GeneratorLoss(nn.Module):
"""Generator Loss Wrapper. Based on model configuration it sets a right set of loss functions and computes
losses. It allows to experiment with different combinations of loss functions with different models by just
changing configurations.
Args:
C (AttrDict): model configuration.
"""
def __init__(self):
super().__init__()
self.use_stft_loss = False
self.use_subband_stft_loss = False
self.use_mse_gan_loss = True
self.use_hinge_gan_loss = False
self.use_feat_match_loss = True
self.use_l1_spec_loss = True
self.stft_loss_weight = 0
self.subband_stft_loss_weight = 0
self.mse_gan_loss_weight = 1
self.hinge_gan_loss_weight = 0
self.feat_match_loss_weight = 108
self.l1_spec_loss_weight = 45
self.mse_loss = MSEGLoss()
self.feat_match_loss = MelganFeatureLoss()
self.l1_spec_loss = L1SpecLoss(**{
"use_mel": True,
"sample_rate": 24000,
"n_fft": 1024,
"hop_length": 256,
"win_length": 1024,
"n_mels": 100,
"mel_fmin": 0.0,
"mel_fmax": None,
})
def forward(
self, y_hat=None, y=None, scores_fake=None, feats_fake=None, feats_real=None, y_hat_sub=None, y_sub=None
):
gen_loss = 0
adv_loss = 0
return_dict = {}
# STFT Loss
if self.use_stft_loss:
stft_loss_mg, stft_loss_sc = self.stft_loss(y_hat[:, :, : y.size(2)].squeeze(1), y.squeeze(1))
return_dict["G_stft_loss_mg"] = stft_loss_mg
return_dict["G_stft_loss_sc"] = stft_loss_sc
gen_loss = gen_loss + self.stft_loss_weight * (stft_loss_mg + stft_loss_sc)
# L1 Spec loss
if self.use_l1_spec_loss:
l1_spec_loss = self.l1_spec_loss(y_hat, y)
return_dict["G_l1_spec_loss"] = l1_spec_loss
gen_loss = gen_loss + self.l1_spec_loss_weight * l1_spec_loss
# subband STFT Loss
if self.use_subband_stft_loss:
subband_stft_loss_mg, subband_stft_loss_sc = self.subband_stft_loss(y_hat_sub, y_sub)
return_dict["G_subband_stft_loss_mg"] = subband_stft_loss_mg
return_dict["G_subband_stft_loss_sc"] = subband_stft_loss_sc
gen_loss = gen_loss + self.subband_stft_loss_weight * (subband_stft_loss_mg + subband_stft_loss_sc)
# multiscale MSE adversarial loss
if self.use_mse_gan_loss and scores_fake is not None:
mse_fake_loss = _apply_G_adv_loss(scores_fake, self.mse_loss)
return_dict["G_mse_fake_loss"] = mse_fake_loss
adv_loss = adv_loss + self.mse_gan_loss_weight * mse_fake_loss
# multiscale Hinge adversarial loss
if self.use_hinge_gan_loss and not scores_fake is not None:
hinge_fake_loss = _apply_G_adv_loss(scores_fake, self.hinge_loss)
return_dict["G_hinge_fake_loss"] = hinge_fake_loss
adv_loss = adv_loss + self.hinge_gan_loss_weight * hinge_fake_loss
# Feature Matching Loss
if self.use_feat_match_loss and not feats_fake is None:
feat_match_loss = self.feat_match_loss(feats_fake, feats_real)
return_dict["G_feat_match_loss"] = feat_match_loss
adv_loss = adv_loss + self.feat_match_loss_weight * feat_match_loss
return_dict["loss"] = gen_loss + adv_loss
return_dict["G_gen_loss"] = gen_loss
return_dict["G_adv_loss"] = adv_loss
return return_dict
class DiscriminatorLoss(nn.Module):
"""Like ```GeneratorLoss```"""
def __init__(self):
super().__init__()
self.use_mse_gan_loss = True
self.mse_loss = MSEDLoss()
def forward(self, scores_fake, scores_real):
loss = 0
return_dict = {}
if self.use_mse_gan_loss:
mse_D_loss, mse_D_real_loss, mse_D_fake_loss = _apply_D_loss(
scores_fake=scores_fake, scores_real=scores_real, loss_func=self.mse_loss
)
return_dict["D_mse_gan_loss"] = mse_D_loss
return_dict["D_mse_gan_real_loss"] = mse_D_real_loss
return_dict["D_mse_gan_fake_loss"] = mse_D_fake_loss
loss += mse_D_loss
return_dict["loss"] = loss
return return_dict