TTTS / ttts /diffusion /diffusion_util.py
mrfakename's picture
Add source code
4ee33aa
raw
history blame
27.1 kB
import json
import os
from pathlib import Path
from datetime import datetime
from matplotlib import pyplot as plt
from ttts.unet1d.embeddings import TextTimeEmbedding
from ttts.unet1d.unet_1d_condition import UNet1DConditionModel
from vocos import Vocos
from torch import expm1, nn
import ttts.diffusion.commons as commons
from accelerate import Accelerator
from ttts.diffusion.operations import OPERATIONS_ENCODER
from accelerate import DistributedDataParallelKwargs
import math
from multiprocessing import cpu_count
from pathlib import Path
from random import random
from functools import partial
from collections import namedtuple
from torch.utils.tensorboard import SummaryWriter
import logging
import torch
import torch.nn.functional as F
from torch import nn, einsum
from torch.optim import AdamW
from torch.utils.data import Dataset, DataLoader
from einops import rearrange, reduce, repeat
from einops.layers.torch import Rearrange
from tqdm.auto import tqdm
TACOTRON_MEL_MAX = 5.5451774444795624753378569716654
TACOTRON_MEL_MIN = -16.118095650958319788125940182791
# TACOTRON_MEL_MIN = -11.512925464970228420089957273422
# -16.118095650958319788125940182791
def denormalize_tacotron_mel(norm_mel):
return ((norm_mel+1)/2)*(TACOTRON_MEL_MAX-TACOTRON_MEL_MIN)+TACOTRON_MEL_MIN
def normalize_tacotron_mel(mel):
return 2 * ((mel - TACOTRON_MEL_MIN) / (TACOTRON_MEL_MAX - TACOTRON_MEL_MIN)) - 1
def exists(x):
return x is not None
def cycle(dl):
while True:
for data in dl:
yield data
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
class TransformerEncoderLayer(nn.Module):
def __init__(self, layer, hidden_size, dropout):
super().__init__()
self.layer = layer
self.hidden_size = hidden_size
self.dropout = dropout
self.op = OPERATIONS_ENCODER[layer](hidden_size, dropout)
def forward(self, x, **kwargs):
return self.op(x, **kwargs)
def LayerNorm(normalized_shape, eps=1e-5, elementwise_affine=True, export=False):
return torch.nn.LayerNorm(normalized_shape, eps, elementwise_affine)
class ConvTBC(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, padding=0):
super(ConvTBC, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.padding = padding
self.weight = torch.nn.Parameter(torch.Tensor(
self.kernel_size, in_channels, out_channels))
self.bias = torch.nn.Parameter(torch.Tensor(out_channels))
def forward(self, input):
return torch.conv_tbc(input.contiguous(), self.weight, self.bias, self.padding)
class ConvLayer(nn.Module):
def __init__(self, c_in, c_out, kernel_size, dropout=0):
super().__init__()
self.layer_norm = LayerNorm(c_in)
conv = ConvTBC(c_in, c_out, kernel_size, padding=kernel_size // 2)
std = math.sqrt((4 * (1.0 - dropout)) / (kernel_size * c_in))
nn.init.normal_(conv.weight, mean=0, std=std)
nn.init.constant_(conv.bias, 0)
self.conv = conv
def forward(self, x, encoder_padding_mask=None, **kwargs):
layer_norm_training = kwargs.get('layer_norm_training', None)
if layer_norm_training is not None:
self.layer_norm.training = layer_norm_training
if encoder_padding_mask is not None:
x = x.masked_fill(encoder_padding_mask.t().unsqueeze(-1), 0)
x = self.layer_norm(x)
x = self.conv(x)
return x
class PhoneEncoder(nn.Module):
def __init__(self,
in_channels=128,
hidden_channels=512,
out_channels=512,
n_layers=6,
p_dropout=0.2,
last_ln = True):
super().__init__()
self.arch = [8 for _ in range(n_layers)]
self.num_layers = n_layers
self.hidden_size = hidden_channels
self.padding_idx = 0
self.dropout = p_dropout
self.layers = nn.ModuleList([])
self.layers.extend([
TransformerEncoderLayer(self.arch[i], self.hidden_size, self.dropout)
for i in range(self.num_layers)
])
self.last_ln = last_ln
self.pre = ConvLayer(in_channels, hidden_channels, 1, p_dropout)
# self.prompt_proj = ConvLayer(in_channels, hidden_channels, 1, p_dropout)
self.out_proj = ConvLayer(hidden_channels, out_channels, 1, p_dropout)
if last_ln:
self.layer_norm = LayerNorm(out_channels)
self.spk_proj = nn.Conv1d(100,hidden_channels,1)
def forward(self, src_tokens, lengths, g=None):
# B x C x T -> T x B x C
src_tokens = self.spk_proj(src_tokens+g)
src_tokens = rearrange(src_tokens, 'b c t -> t b c')
# compute padding mask
encoder_padding_mask = ~commons.sequence_mask(lengths, src_tokens.size(0)).to(torch.bool)
# prompt_mask = ~commons.sequence_mask(prompt_lengths, prompt.size(0)).to(torch.bool)
x = src_tokens
x = self.pre(x, encoder_padding_mask=encoder_padding_mask)
x = x * (1 - encoder_padding_mask.float()).transpose(0, 1)[..., None]
# prompt = self.prompt_proj(prompt, encoder_padding_mask=prompt_mask)
# encoder layers
for i in range(self.num_layers):
x = self.layers[i](x, encoder_padding_mask=encoder_padding_mask)
# x = x+self.attn_blocks[i](x, prompt, prompt, key_padding_mask=prompt_mask)[0]
x = self.out_proj(x, encoder_padding_mask=encoder_padding_mask)
if self.last_ln:
x = self.layer_norm(x)
x = x * (1 - encoder_padding_mask.float()).transpose(0, 1)[..., None]
x = rearrange(x, 't b c-> b c t')
return x
class PromptEncoder(nn.Module):
def __init__(self,
in_channels=128,
hidden_channels=256,
out_channels=512,
n_layers=6,
p_dropout=0.2,
last_ln = True):
super().__init__()
self.arch = [8 for _ in range(n_layers)]
self.num_layers = n_layers
self.hidden_size = hidden_channels
self.padding_idx = 0
self.dropout = p_dropout
self.layers = nn.ModuleList([])
self.layers.extend([
TransformerEncoderLayer(self.arch[i], self.hidden_size, self.dropout)
for i in range(self.num_layers)
])
self.last_ln = last_ln
if last_ln:
self.layer_norm = LayerNorm(out_channels)
self.pre = ConvLayer(in_channels, hidden_channels, 1, p_dropout)
self.out_proj = ConvLayer(hidden_channels, out_channels, 1, p_dropout)
def forward(self, src_tokens, lengths=None):
# B x C x T -> T x B x C
src_tokens = rearrange(src_tokens, 'b c t -> t b c')
# compute padding mask
encoder_padding_mask = ~commons.sequence_mask(lengths, src_tokens.size(0)).to(torch.bool)
x = src_tokens
x = self.pre(x, encoder_padding_mask=encoder_padding_mask)
x = x * (1 - encoder_padding_mask.float()).transpose(0, 1)[..., None]
# encoder layers
for layer in self.layers:
x = layer(x, encoder_padding_mask=encoder_padding_mask)
x = self.out_proj(x, encoder_padding_mask=encoder_padding_mask)
if self.last_ln:
x = self.layer_norm(x)
x = x * (1 - encoder_padding_mask.float()).transpose(0, 1)[..., None]
x = rearrange(x, 't b c-> b c t')
return x
class SinusoidalPosEmb(nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
def forward(self, x):
device = x.device
half_dim = self.dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
emb = x[:, None] * emb[None, :]
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
return emb
@torch.jit.script
def silu(x):
return x * torch.sigmoid(x)
class ResidualBlock(nn.Module):
def __init__(self, n_mels, residual_channels, dilation, kernel_size, dropout):
'''
:param n_mels: inplanes of conv1x1 for spectrogram conditional
:param residual_channels: audio conv
:param dilation: audio conv dilation
:param uncond: disable spectrogram conditional
'''
super().__init__()
if dilation==1:
padding = kernel_size//2
else:
padding = dilation
self.dilated_conv = ConvLayer(residual_channels, 2 * residual_channels, kernel_size)
self.conditioner_projection = ConvLayer(n_mels, 2 * residual_channels, 1)
# self.output_projection = ConvLayer(residual_channels, 2 * residual_channels, 1)
self.output_projection = ConvLayer(residual_channels, residual_channels, 1)
self.t_proj = ConvLayer(residual_channels, residual_channels, 1)
self.drop = nn.Dropout(dropout)
def forward(self, x, diffusion_step, conditioner,x_mask):
assert (conditioner is None and self.conditioner_projection is None) or \
(conditioner is not None and self.conditioner_projection is not None)
#T B C
y = x + self.t_proj(diffusion_step.unsqueeze(0))
y = y.masked_fill(x_mask.t().unsqueeze(-1), 0)
conditioner = self.conditioner_projection(conditioner)
conditioner = self.drop(conditioner)
y = self.dilated_conv(y) + conditioner
y = y.masked_fill(x_mask.t().unsqueeze(-1), 0)
gate, filter_ = torch.chunk(y, 2, dim=-1)
y = torch.sigmoid(gate) * torch.tanh(filter_)
y = y.masked_fill(x_mask.t().unsqueeze(-1), 0)
y = self.output_projection(y)
return y
# y = y.masked_fill(x_mask.t().unsqueeze(-1), 0)
# residual, skip = torch.chunk(y, 2, dim=-1)
# return (x + residual) / math.sqrt(2.0), skip
class Pre_model(nn.Module):
def __init__(self, cfg) -> None:
super().__init__()
self.cfg = cfg
self.phoneme_encoder = PhoneEncoder(**self.cfg['phoneme_encoder'])
print("phoneme params:", count_parameters(self.phoneme_encoder))
self.prompt_encoder = PromptEncoder(**self.cfg['prompt_encoder'])
print("prompt params:", count_parameters(self.prompt_encoder))
dim = self.cfg['phoneme_encoder']['out_channels']
self.ref_enc = TextTimeEmbedding(100, 100, 1)
def forward(self,data, g=None):
mel_recon_padded, mel_padded, mel_lengths, refer_padded, refer_lengths = data
mel_recon_padded, refer_padded = normalize_tacotron_mel(mel_recon_padded), normalize_tacotron_mel(refer_padded)
g = self.ref_enc(refer_padded.transpose(1,2)).unsqueeze(-1)
audio_prompt = self.prompt_encoder(refer_padded,refer_lengths)
content = self.phoneme_encoder(mel_recon_padded, mel_lengths, g)
return content, audio_prompt
def infer(self, data):
mel_recon_padded, refer_padded, mel_lengths, refer_lengths = data
mel_recon_padded, refer_padded = normalize_tacotron_mel(mel_recon_padded), normalize_tacotron_mel(refer_padded)
g = self.ref_enc(refer_padded.transpose(1,2)).unsqueeze(-1)
audio_prompt = self.prompt_encoder(refer_padded,refer_lengths)
content = self.phoneme_encoder(mel_recon_padded, mel_lengths, g)
return content, audio_prompt
class Diffusion_Encoder(nn.Module):
def __init__(self,
in_channels=128,
out_channels=128,
hidden_channels=256,
block_out_channels = [128,256,384,512],
n_heads=8,
p_dropout=0.2,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.n_heads=n_heads
self.unet = UNet1DConditionModel(
in_channels=in_channels+hidden_channels,
out_channels=out_channels,
block_out_channels=block_out_channels,
norm_num_groups=8,
cross_attention_dim=hidden_channels,
attention_head_dim=n_heads,
addition_embed_type='text',
resnet_time_scale_shift='scale_shift',
)
def forward(self, x, data, t):
assert torch.isnan(x).any() == False
contentvec, prompt, contentvec_lengths, prompt_lengths = data
prompt = rearrange(prompt,' b c t-> b t c')
x = torch.cat([x, contentvec], dim=1)
prompt_mask = commons.sequence_mask(prompt_lengths, prompt.size(1)).to(torch.bool)
x = self.unet(x, t, prompt, encoder_attention_mask=prompt_mask)
return x.sample
# tensor helper functions
def log(t, eps = 1e-20):
return torch.log(t.clamp(min = eps))
def extract(a, t, x_shape):
b, *_ = t.shape
out = a.gather(-1, t)
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
def linear_beta_schedule(timesteps):
"""
linear schedule, proposed in original ddpm paper
"""
scale = 1000 / timesteps
beta_start = scale * 0.0001
beta_end = scale * 0.02
return torch.linspace(beta_start, beta_end, timesteps, dtype = torch.float64)
def default(val, d):
if exists(val):
return val
return d() if callable(d) else d
ModelPrediction = namedtuple('ModelPrediction', ['pred_noise', 'pred_x_start'])
class Diffuser(nn.Module):
def __init__(self,
cfg,
ddim_sampling_eta = 0,
min_snr_loss_weight = False,
min_snr_gamma = 5,
conditioning_free = True,
conditioning_free_k = 1.0
):
super().__init__()
self.pre_model = Pre_model(cfg)
print("pre params: ", count_parameters(self.pre_model))
self.diff_model = Diffusion_Encoder(**cfg['diffusion'])
print("diff params: ", count_parameters(self.diff_model))
self.dim = self.diff_model.in_channels
timesteps = cfg['train']['timesteps']
beta_schedule_fn = linear_beta_schedule
betas = beta_schedule_fn(timesteps)
alphas = 1. - betas
alphas_cumprod = torch.cumprod(alphas, dim = 0)
alphas_cumprod_prev = F.pad(alphas_cumprod[:-1], (1, 0), value = 1.)
timesteps, = betas.shape
self.num_timesteps = timesteps
self.unconditioned_content = nn.Parameter(torch.randn(1,cfg['phoneme_encoder']['out_channels'],1))
# self.sampling_timesteps = cfg['train']['sampling_timesteps']
self.ddim_sampling_eta = ddim_sampling_eta
register_buffer = lambda name, val: self.register_buffer(name, val.to(torch.float32))
register_buffer('betas', betas)
register_buffer('alphas_cumprod', alphas_cumprod)
register_buffer('alphas_cumprod_prev', alphas_cumprod_prev)
register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod))
register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1. - alphas_cumprod))
register_buffer('log_one_minus_alphas_cumprod', torch.log(1. - alphas_cumprod))
register_buffer('sqrt_recip_alphas_cumprod', torch.sqrt(1. / alphas_cumprod))
register_buffer('sqrt_recipm1_alphas_cumprod', torch.sqrt(1. / alphas_cumprod - 1))
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
register_buffer('posterior_variance', posterior_variance)
register_buffer('posterior_log_variance_clipped', torch.log(posterior_variance.clamp(min =1e-20)))
register_buffer('posterior_mean_coef1', betas * torch.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))
register_buffer('posterior_mean_coef2', (1. - alphas_cumprod_prev) * torch.sqrt(alphas) / (1. - alphas_cumprod))
snr = alphas_cumprod / (1 - alphas_cumprod)
maybe_clipped_snr = snr.clone()
if min_snr_loss_weight:
maybe_clipped_snr.clamp_(max = min_snr_gamma)
register_buffer('loss_weight', maybe_clipped_snr)
self.conditioning_free = conditioning_free
self.conditioning_free_k = conditioning_free_k
def predict_noise_from_start(self, x_t, t, x0):
return (
(extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - x0) / \
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
)
def q_posterior(self, x_start, x_t, t):
posterior_mean = (
extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
)
posterior_variance = extract(self.posterior_variance, t, x_t.shape)
posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def model_predictions(self, x, t, data = None):
model_output = self.diff_model(x,data, t)
t = t.type(torch.int64)
x_start = model_output
pred_noise = self.predict_noise_from_start(x, t, x_start)
return ModelPrediction(pred_noise, x_start)
def sample_fun(self, x, t, data = None):
if self.conditioning_free:
# data[1] = self.unconditioned_refer[]
model_output_no_conditioning = self.diff_model(x, data, t)
model_output = self.diff_model(x,data, t)
t = t.type(torch.int64)
pred_noise = model_output
if self.conditioning_free:
cfk = self.conditioning_free_k
model_output = (1 + cfk) * model_output - cfk * model_output_no_conditioning
return pred_noise
def p_mean_variance(self, x, t, data):
preds = self.model_predictions(x, t, data)
x_start = preds.pred_x_start
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start = x_start, x_t = x, t = t)
return model_mean, posterior_variance, posterior_log_variance, x_start
@torch.no_grad()
def p_sample(self, x, t: int, data):
b, *_, device = *x.shape, x.device
batched_times = torch.full((b,), t, device = device, dtype = torch.long)
model_mean, _, model_log_variance, x_start = self.p_mean_variance(x = x, t = batched_times, data=data)
noise = torch.randn_like(x) if t > 0 else 0. # no noise if t == 0
pred_img = model_mean + (0.5 * model_log_variance).exp() * noise
return pred_img, x_start
@torch.no_grad()
def p_sample_loop(self, content, refer, lengths, refer_lengths, f0, uv, auto_predict_f0 = True):
data = (content, refer, f0, 0, 0, lengths, refer_lengths, uv)
content, refer = self.pre_model.infer(data)
shape = (content.shape[1], self.dim, content.shape[0])
batch, device = shape[0], refer.device
img = torch.randn(shape, device = device)
imgs = [img]
x_start = None
for t in tqdm(reversed(range(0, self.num_timesteps)), desc = 'sampling loop time step', total = self.num_timesteps):
img, x_start = self.p_sample(img, t, (content,refer,lengths,refer_lengths))
imgs.append(img)
ret = img
return ret
@torch.no_grad()
def ddim_sample(self, content, refer, lengths, refer_lengths, f0, uv, auto_predict_f0 = True):
data = (content, refer, f0, 0, 0, lengths, refer_lengths, uv)
content, refer = self.pre_model.infer(data,auto_predict_f0=auto_predict_f0)
shape = (content.shape[1], self.dim, content.shape[0])
batch, device, total_timesteps, sampling_timesteps, eta = shape[0], refer.device, self.num_timesteps, self.sampling_timesteps, self.ddim_sampling_eta
times = torch.linspace(-1, total_timesteps - 1, steps = sampling_timesteps + 1) # [-1, 0, 1, 2, ..., T-1] when sampling_timesteps == total_timesteps
times = list(reversed(times.int().tolist()))
time_pairs = list(zip(times[:-1], times[1:])) # [(T-1, T-2), (T-2, T-3), ..., (1, 0), (0, -1)]
img = torch.randn(shape, device = device)
imgs = [img]
x_start = None
for time, time_next in tqdm(time_pairs, desc = 'sampling loop time step'):
time_cond = torch.full((batch,), time, device = device, dtype = torch.long)
pred_noise, x_start, *_ = self.model_predictions(img, time_cond, (content,refer,lengths,refer_lengths))
if time_next < 0:
img = x_start
imgs.append(img)
continue
alpha = self.alphas_cumprod[time]
alpha_next = self.alphas_cumprod[time_next]
sigma = eta * ((1 - alpha / alpha_next) * (1 - alpha_next) / (1 - alpha)).sqrt()
c = (1 - alpha_next - sigma ** 2).sqrt()
noise = torch.randn_like(img)
img = x_start * alpha_next.sqrt() + \
c * pred_noise + \
sigma * noise
imgs.append(img)
ret = img
return ret
@torch.no_grad()
def sample(self,
mel_recon, refer, lengths, refer_lengths,
# c, refer, f0, uv, lengths, refer_lengths, vocos,
sampling_timesteps=100, sample_method='unipc'
):
mel_recon, refer = normalize_tacotron_mel(mel_recon), normalize_tacotron_mel(refer)
if refer.shape[0]==2:
refer = refer[0].unsqueeze(0)
self.sampling_timesteps = sampling_timesteps
if sample_method == 'ddpm':
sample_fn = self.p_sample_loop
# audio = sample_fn(c, refer, lengths, refer_lengths, f0, uv, auto_predict_f0)
elif sample_method == 'ddim':
sample_fn = self.ddim_sample
# audio = sample_fn(c, refer, lengths, refer_lengths, f0, uv, auto_predict_f0)
elif sample_method == 'dpmsolver':
from sampler.dpm_solver import NoiseScheduleVP, model_wrapper, DPM_Solver
noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.betas)
def my_wrapper(fn):
def wrapped(x, t, **kwargs):
ret = fn(x, t, **kwargs)
self.bar.update(1)
return ret
return wrapped
# data = (c, refer, f0, 0, 0, lengths, refer_lengths, uv)
# content, refer = self.pre_model.infer(data,auto_predict_f0=auto_predict_f0)
shape = (content.shape[1], self.dim, content.shape[0])
batch, device, total_timesteps, sampling_timesteps, eta = shape[0], refer.device, self.num_timesteps, self.sampling_timesteps, self.ddim_sampling_eta
audio = torch.randn(shape, device = device)
model_fn = model_wrapper(
my_wrapper(self.sample_fun),
noise_schedule,
model_type="x_start", #"noise" or "x_start" or "v" or "score"
model_kwargs={"data":(content,refer,lengths,refer_lengths)}
)
dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++")
steps = 40
self.bar = tqdm(desc="sample time step", total=steps)
audio = dpm_solver.sample(
audio,
steps=steps,
order=2,
skip_type="time_uniform",
method="multistep",
)
self.bar.close()
elif sample_method =='unipc':
from ttts.sampler.uni_pc import NoiseScheduleVP, model_wrapper, UniPC
noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.betas)
def my_wrapper(fn):
def wrapped(x, t, **kwargs):
ret = fn(x, t, **kwargs)
self.bar.update(1)
return ret
return wrapped
data = (mel_recon, refer, lengths, refer_lengths)
content, refer = self.pre_model.infer(data)
shape = (content.shape[0], self.dim, content.shape[2])
batch, device, total_timesteps, sampling_timesteps, eta = shape[0], refer.device, self.num_timesteps, self.sampling_timesteps, self.ddim_sampling_eta
audio = torch.randn(shape, device = device)
model_fn = model_wrapper(
my_wrapper(self.sample_fun),
noise_schedule,
model_type="noise", #"noise" or "x_start" or "v" or "score"
model_kwargs={"data":(content,refer,lengths,refer_lengths)}
)
uni_pc = UniPC(model_fn, noise_schedule, variant='bh2')
steps = 30
self.bar = tqdm(desc="sample time step", total=steps)
mel = uni_pc.sample(
audio,
steps=steps,
order=2,
skip_type="time_uniform",
method="multistep",
)
self.bar.close()
# mel = audio
# vocos.to(audio.device)
# audio = vocos.decode(audio)
# if audio.ndim == 3:
# audio = rearrange(audio, 'b 1 n -> b n')
# return denormalize(mel)
return denormalize_tacotron_mel(mel)
def q_sample(self, x_start, t, noise = None):
noise = default(noise, lambda: torch.randn_like(x_start))
return (
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
)
def forward(self, data, conditioning_free=False):
unused_params = []
mel_recon_padded, mel_padded, mel_lengths, refer_padded, refer_lengths = data
mel_recon_padded, mel_padded = normalize_tacotron_mel(mel_recon_padded), normalize_tacotron_mel(mel_recon_padded)
assert mel_recon_padded.shape[2] == mel_padded.shape[2]
b, d, n, device = *mel_padded.shape, mel_padded.device
x_mask = torch.unsqueeze(commons.sequence_mask(mel_lengths, mel_padded.size(2)), 1).to(mel_padded.dtype)
x_start = mel_padded*x_mask
# get pre model outputs
content, refer = self.pre_model(data)
if conditioning_free==True:
refer = self.unconditioned_refer.repeat(data[0].shape[0], 1 ,1) + refer.mean()*0
else:
unused_params.append(self.unconditioned_refer)
t = torch.randint(0, self.num_timesteps, (b,), device=device).long()
noise = torch.randn_like(x_start)*x_mask
# noise sample
x = self.q_sample(x_start = x_start, t = t, noise = noise)
# predict and take gradient step
model_out = self.diff_model(x,(content,refer,mel_lengths,refer_lengths), t)
target = noise
loss = F.mse_loss(model_out, target, reduction = 'none')
loss_diff = reduce(loss, 'b ... -> b (...)', 'mean')
loss_diff = loss_diff * extract(self.loss_weight, t, loss.shape)
loss_diff = loss_diff.mean()
loss = loss_diff
extraneous_addition = 0
for p in unused_params:
extraneous_addition = extraneous_addition + p.mean()
loss = loss + extraneous_addition * 0
return loss
def get_grad_norm(model):
total_norm = 0
for name,p in model.named_parameters():
try:
param_norm = p.grad.data.norm(2)
total_norm += param_norm.item() ** 2
except:
print(name)
total_norm = total_norm ** (1. / 2)
return total_norm
logging.getLogger('matplotlib').setLevel(logging.WARNING)
logging.getLogger('numba').setLevel(logging.WARNING)