TTTS / ttts /diffusion /train.py
mrfakename's picture
Add source code
4ee33aa
raw
history blame
14 kB
from omegaconf import OmegaConf
import torchaudio
from ttts.diffusion.aa_model import AA_diffusion, denormalize_tacotron_mel, normalize_tacotron_mel
from ttts.gpt.voice_tokenizer import VoiceBpeTokenizer
from ttts.utils.diffusion import SpacedDiffusion, space_timesteps, get_named_beta_schedule
import torch
import copy
from datetime import datetime
import json
from vocos import Vocos
from pathlib import Path
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from ttts.utils.infer_utils import load_model
from ttts.utils.utils import EMA, clean_checkpoints, plot_spectrogram_to_numpy, summarize, update_moving_average
from ttts.diffusion.dataset import DiffusionDataset, DiffusionCollater
from ttts.diffusion.model import DiffusionTts
import torch
import os
from torch.utils.data import DataLoader
from torch import nn
from torch.optim import AdamW
from accelerate import Accelerator
import functools
import random
import torch
from torch.cuda.amp import autocast
from ttts.utils.diffusion import get_named_beta_schedule
from ttts.utils.resample import create_named_schedule_sampler, LossAwareSampler, DeterministicSampler, LossSecondMomentResampler
from ttts.utils.diffusion import space_timesteps, SpacedDiffusion
# from ttts.diffusion.diffusion_util import Diffuser
# from accelerate import DistributedDataParallelKwargs
def do_spectrogram_diffusion(diffusion_model, diffuser, latents, conditioning_latents, temperature=1, verbose=True):
"""
Uses the specified diffusion model to convert discrete codes into a spectrogram.
"""
with torch.no_grad():
output_seq_len = latents.shape[2] * 4 # This diffusion model converts from 22kHz spectrogram codes to a 24kHz spectrogram signal.
output_shape = (latents.shape[0], 100, output_seq_len)
noise = torch.randn(output_shape, device=latents.device) * temperature
mel = diffuser.p_sample_loop(diffusion_model, output_shape, noise=noise,
model_kwargs= {
"hint": latents,
"refer": conditioning_latents
},
progress=verbose)
return denormalize_tacotron_mel(mel)[:,:,:output_seq_len]
def set_requires_grad(model, val):
for p in model.parameters():
p.requires_grad = val
def get_grad_norm(model):
total_norm = 0
for name,p in model.named_parameters():
try:
param_norm = p.grad.data.norm(2)
total_norm += param_norm.item() ** 2
except:
print(name)
pass
total_norm = total_norm ** (1. / 2)
return total_norm
def cycle(dl):
while True:
for data in dl:
yield data
def warmup(step):
if step<1000:
return float(step/1000)
else:
return 1
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
class Trainer(object):
def __init__(self, cfg_path='ttts/diffusion/config.yaml'):
# ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
# self.accelerator = Accelerator(kwargs_handlers=[ddp_kwargs])
self.accelerator = Accelerator()
self.cfg = OmegaConf.load(cfg_path)
# self.cfg = json.load(open(cfg_path))
trained_diffusion_steps = 1000
self.trained_diffusion_steps = 1000
desired_diffusion_steps = 1000
self.desired_diffusion_steps = 1000
cond_free_k = 2.
self.gpt = load_model('gpt',self.cfg['dataset']['gpt_path'],'ttts/gpt/config.json','cuda')
self.mel_length_compression = self.gpt.mel_length_compression
self.diffuser= SpacedDiffusion(use_timesteps=space_timesteps(trained_diffusion_steps, [desired_diffusion_steps]), model_mean_type='epsilon',
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', trained_diffusion_steps),
conditioning_free=False, conditioning_free_k=cond_free_k)
self.infer_diffuser = SpacedDiffusion(use_timesteps=space_timesteps(trained_diffusion_steps, [50]), model_mean_type='epsilon',
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', trained_diffusion_steps),
conditioning_free=True, conditioning_free_k=cond_free_k, sampler='dpm++2m')
# self.diffusion = DiffusionTts(**self.cfg['diffusion'])
self.diffusion = AA_diffusion(self.cfg)
print("model params:", count_parameters(self.diffusion))
self.dataset = DiffusionDataset(self.cfg)
self.dataloader = DataLoader(self.dataset, **self.cfg['dataloader'], collate_fn=DiffusionCollater())
self.vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
self.train_steps = self.cfg['train']['train_steps']
self.val_freq = self.cfg['train']['val_freq']
if self.accelerator.is_main_process:
self.eval_dataloader = DataLoader(self.dataset, batch_size = 1, shuffle= False, num_workers = 16, pin_memory=True, collate_fn=DiffusionCollater())
self.eval_dataloader = cycle(self.eval_dataloader)
self.ema_model = self._get_target_encoder(self.diffusion).to(self.accelerator.device)
now = datetime.now()
self.logs_folder = Path(self.cfg['train']['logs_folder']+'/'+now.strftime("%Y-%m-%d-%H-%M-%S"))
self.logs_folder.mkdir(exist_ok = True, parents=True)
self.ema_updater = EMA(0.999)
self.optimizer = AdamW(self.diffusion.parameters(),lr=self.cfg['train']['lr'], betas=(0.9, 0.999), weight_decay=0.01)
self.scheduler = torch.optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=warmup)
self.diffusion, self.dataloader, self.optimizer, self.scheduler, self.gpt = self.accelerator.prepare(self.diffusion, self.dataloader, self.optimizer, self.scheduler, self.gpt)
self.dataloader = cycle(self.dataloader)
self.step=0
self.gradient_accumulate_every=self.cfg['train']['accumulate_num']
self.unconditioned_percentage = self.cfg['train']['unconditioned_percentage']
def _get_target_encoder(self, model):
target_encoder = copy.deepcopy(model)
set_requires_grad(target_encoder, False)
for p in target_encoder.parameters():
p.DO_NOT_TRAIN = True
return target_encoder
def save(self, milestone):
if not self.accelerator.is_local_main_process:
return
data = {
'step': self.step,
'model': self.accelerator.get_state_dict(self.diffusion),
}
torch.save(data, str(self.logs_folder / f'model-{milestone}.pt'))
def load(self, model_path):
accelerator = self.accelerator
device = accelerator.device
data = torch.load(model_path, map_location=device)
state_dict = data['model']
self.step = data['step']
model = self.accelerator.unwrap_model(self.diffusion)
model.load_state_dict(state_dict)
def train(self):
accelerator = self.accelerator
device = accelerator.device
if accelerator.is_main_process:
writer = SummaryWriter(log_dir=self.logs_folder)
writer_eval = SummaryWriter(log_dir=os.path.join(self.logs_folder, 'eval'))
with tqdm(initial = self.step, total = self.train_steps, disable = not accelerator.is_main_process) as pbar:
while self.step < self.train_steps:
total_loss = 0.
# with torch.autograd.detect_anomaly():
for _ in range(self.gradient_accumulate_every):
data = next(self.dataloader)
if data==None:
continue
with torch.no_grad():
latent = self.gpt(data['padded_mel_refer'], data['padded_text'],
torch.tensor([data['padded_text'].shape[-1]], device=device), data['padded_mel_code'],
torch.tensor([data['padded_mel_code'].shape[-1]*self.mel_length_compression], device=device),
return_latent=True, clip_inputs=False).transpose(1,2)
# mel_recon_padded, mel_padded, mel_lengths, refer_padded, refer_lengths
x_start = normalize_tacotron_mel(data['padded_mel'].to(device))
aligned_conditioning = latent
conditioning_latent = normalize_tacotron_mel(data['padded_mel_refer'].to(device))
t = torch.randint(0, self.desired_diffusion_steps, (x_start.shape[0],), device=device).long().to(device)
with self.accelerator.autocast():
loss = self.diffuser.training_losses(
model = self.diffusion,
x_start = x_start,
t = t,
model_kwargs = {
"hint": aligned_conditioning,
"refer": conditioning_latent
},
)["loss"].mean()
unused_params =[]
model = self.accelerator.unwrap_model(self.diffusion)
unused_params.extend(list(model.refer_model.blocks.parameters()))
unused_params.extend(list(model.refer_model.out.parameters()))
unused_params.extend(list(model.refer_model.hint_converter.parameters()))
unused_params.extend(list(model.refer_enc.visual.proj))
extraneous_addition = 0
for p in unused_params:
extraneous_addition = extraneous_addition + p.mean()
loss = loss + 0*extraneous_addition
loss = loss / self.gradient_accumulate_every
total_loss += loss.item()
self.accelerator.backward(loss)
grad_norm = get_grad_norm(self.diffusion)
accelerator.clip_grad_norm_(self.diffusion.parameters(), 1.0)
pbar.set_description(f'loss: {total_loss:.4f}')
accelerator.wait_for_everyone()
self.optimizer.step()
self.optimizer.zero_grad()
self.scheduler.step()
accelerator.wait_for_everyone()
# if accelerator.is_main_process:
# update_moving_average(self.ema_updater,self.ema_model,self.diffusion)
if accelerator.is_main_process and self.step % self.val_freq == 0:
scalar_dict = {"loss": total_loss, "loss/grad": grad_norm, "lr":self.scheduler.get_last_lr()[0]}
summarize(
writer=writer,
global_step=self.step,
scalars=scalar_dict
)
if accelerator.is_main_process and self.step % self.cfg['train']['save_freq'] == 0:
self.ema_model.eval()
data = next(self.eval_dataloader)
text_padded, mel_code_padded, mel_padded, mel_lengths,\
refer_padded, refer_lengths = data['padded_text'].to(device), data['padded_mel_code'].to(device), data['padded_mel'], data['mel_lengths'], data['padded_mel_refer'].to(device), data['mel_refer_lengths']
text_padded, mel_code_padded, refer_padded = text_padded.to(device), mel_code_padded.to(device), refer_padded.to(device)
with torch.no_grad():
latent = self.gpt(refer_padded, text_padded,
torch.tensor([text_padded.shape[-1]], device=device), mel_code_padded,
torch.tensor([mel_code_padded.shape[-1]*self.mel_length_compression], device=device),
return_latent=True, clip_inputs=False).transpose(1,2)
refer_padded = normalize_tacotron_mel(refer_padded)
with torch.no_grad():
diffusion = self.accelerator.unwrap_model(self.diffusion)
mel = do_spectrogram_diffusion(diffusion, self.infer_diffuser,latent,refer_padded,temperature=0.8)
mel = mel.detach().cpu()
milestone = self.step // self.cfg['train']['save_freq']
gen = self.vocos.decode(mel)
torchaudio.save(str(self.logs_folder / f'sample-{milestone}.wav'), gen, 24000)
audio_dict = {}
audio_dict.update({
f"gen/audio": gen,
})
image_dict = {
f"gt/mel": plot_spectrogram_to_numpy(mel_padded[0, :, :].detach().unsqueeze(-1).cpu()),
f"gen/mel": plot_spectrogram_to_numpy(mel[0, :, :].detach().unsqueeze(-1).cpu()),
}
summarize(
writer=writer_eval,
audios=audio_dict,
global_step=self.step,
images=image_dict,
)
keep_ckpts = self.cfg['train']['keep_ckpts']
if keep_ckpts > 0:
clean_checkpoints(path_to_models=self.logs_folder, n_ckpts_to_keep=keep_ckpts, sort_by_time=True)
self.save(self.step//1000)
self.ema_model.train()
self.step += 1
pbar.update(1)
accelerator.print('training complete')
if __name__ == '__main__':
trainer = Trainer()
trainer.load('/home/hyc/tortoise_plus_zh/ttts/diffusion/logs/2024-01-09-17-44-36/model-855.pt')
trainer.train()