TTTS / ttts /diffusion /operations.py
mrfakename's picture
Add source code
4ee33aa
raw
history blame
40.2 kB
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
import math
import torch
from torch import nn
from torch.nn import Parameter
import torch.onnx.operators
from collections import defaultdict
import torch.nn.functional as F
def make_positions(tensor, padding_idx):
"""Replace non-padding symbols with their position numbers.
Position numbers begin at padding_idx+1. Padding symbols are ignored.
"""
# The series of casts and type-conversions here are carefully
# balanced to both work with ONNX export and XLA. In particular XLA
# prefers ints, cumsum defaults to output longs, and ONNX doesn't know
# how to handle the dtype kwarg in cumsum.
mask = tensor.ne(padding_idx).int()
return (
torch.cumsum(mask, dim=1).type_as(mask) * mask
).long() + padding_idx
def softmax(x, dim):
return F.softmax(x, dim=dim, dtype=torch.float32)
class SelfAttention(nn.Module):
def __init__(self, hid_dim, n_heads, dropout=0.1, gaussian_bias=False, gaussian_tao=None,
gaus_init_l=3000):
super().__init__()
self.hid_dim = hid_dim
self.n_heads = n_heads
assert hid_dim % n_heads == 0
self.w_q = Linear(hid_dim, hid_dim)
self.w_k = Linear(hid_dim, hid_dim)
self.w_v = Linear(hid_dim, hid_dim)
self.gaussian_bias = gaussian_bias
if gaussian_bias:
self.tao = nn.Parameter(torch.FloatTensor(n_heads))
nn.init.constant_(self.tao, gaussian_tao) # sigma = tao^2
# pre construct a gaussian matrix without dividing sigma^2
self.bias_matrix = torch.Tensor([[-abs(i - j) ** 2 / 2.
for i in range(gaus_init_l)] for j in range(gaus_init_l)])
self.fc = Linear(hid_dim, hid_dim)
self.dropout = nn.Dropout(dropout)
self.sqrt_d = (hid_dim // n_heads) ** -0.5
def forward(self, query, key, value, mask=None, require_w=False):
# Q,K,V计算与变形: input is L B C
for m in [query, key, value]:
m.transpose_(0, 1) # convert to B L C
bsz, length, emb_dim = query.shape
Q = self.w_q(query) # B, L, hid_emb
K = self.w_k(key)
V = self.w_v(value)
# -1 means the dim should be inferred
# B, L, n, C//n,把embedding分成n份, n为num_head
Q = Q.view(bsz, -1, self.n_heads, self.hid_dim // self.n_heads)
Q = Q.permute(0, 2, 1, 3) # B, n, L, C//n
K = K.view(bsz, -1, self.n_heads, self.hid_dim // self.n_heads).permute(0, 2, 1, 3)
V = V.view(bsz, -1, self.n_heads, self.hid_dim // self.n_heads).permute(0, 2, 1, 3)
QK = torch.matmul(Q, K.transpose(2, 3)) * self.sqrt_d # Transpose last two dim, out = B, n, L, L
if self.gaussian_bias:
# gaussian distribution: L*L
L = QK.size(-1)
# get matrix of -(i-j)^2 / 2: i, j \in [0, L-1]
if L <= self.bias_matrix.size(0):
gaussian_mask = self.bias_matrix[:L, :L].repeat(self.n_heads, 1, 1).to(QK.device) # n. L. L.
else: # 样本太长, 预构建的数值矩阵不够大
gaussian_mask = torch.tensor([[-abs(i - j) ** 2 / 2.
for i in range(L)] for j in range(L)]
).repeat(self.n_heads, 1, 1).to(QK.device)
print("Tensor is too long, size:", L)
# divide gaussian matrix by tao^4 (multiply by tao^(-4))
# tao: nn.Parameters, size [n_head]
gaussian_mask = torch.mul(gaussian_mask, torch.pow(self.tao, -4)[:, None, None]) # out shape n,L,L
QK += gaussian_mask.repeat(bsz, 1, 1, 1).to(QK.device) # expand mask n,L,L to B, n, L, L
if mask is not None:
'''
attn weight size: b*n_h, L, L
mask size: b, L -> b, 1, 1, L +
attn_weight(b,n_head,L,L).masked_fill(mask)
'''
QK = QK.masked_fill(mask[:, None, None, :], float('-inf'))
# 然后对Q,K相乘的结果 计算softmax 计算weight
attn_weight = torch.softmax(QK, dim=-1)
attention = self.dropout(attn_weight)
# 第三步,attention结果与V相乘
x = torch.matmul(attention, V) # B, n, L, C//n
# 最后将多头排列好,就是multi-head attention的结果了
x = x.permute(0, 2, 1, 3).contiguous() # B, L, n, C//n
x = x.view(bsz, -1, self.n_heads * (self.hid_dim // self.n_heads)) # B, L, C
x = self.fc(x)
x.transpose_(0, 1) # return L B C
# return to operations.py: EncGausSALayer.forward()
return (x, attn_weight[:1, :1, ...]) if require_w else (x, None) # remember to add bracket
class EncGausSALayer(nn.Module):
def __init__(self, hid_dim, num_heads, dropout, attention_dropout=0.1, relu_dropout=0.1, gaus_bias=False,
gaus_tao=10):
super().__init__()
self.dropout = dropout
self.layer_norm1 = LayerNorm(hid_dim)
# hid_dim, n_heads, dropout=0.1, gaussian_bias=False, gaussian_tao=None
self.self_attn_gaus_bias = SelfAttention(hid_dim, num_heads, attention_dropout, gaus_bias, gaus_tao)
self.layer_norm2 = LayerNorm(hid_dim)
self.ffn = TransformerFFNLayer(hid_dim, 4 * hid_dim, kernel_size=9, dropout=relu_dropout)
def forward(self, x, encoder_padding_mask=None, require_w=False, **kwargs):
layer_norm_training = kwargs.get('layer_norm_training', None)
# print("EncGausSA, kwargs", str(kwargs))
# require_w = kwargs.get('require_w', False)
# print("EncGausSA, require_w", require_w)
if layer_norm_training is not None:
self.layer_norm1.training = layer_norm_training
self.layer_norm2.training = layer_norm_training
residual = x
x = self.layer_norm1(x)
# x = self.self_attn_gaus_bias(query=x, key=x, value=x, mask=encoder_padding_mask)
x, attn_w = self.self_attn_gaus_bias(query=x, key=x, value=x, mask=encoder_padding_mask, require_w=require_w)
# print("self_attn return:", type(x))
x = F.dropout(x, self.dropout, training=self.training)
x = residual + x
residual = x
x = self.layer_norm2(x)
x = self.ffn(x)
x = F.dropout(x, self.dropout, training=self.training)
x = residual + x
return (x, attn_w) if require_w else x
class CyclicalPositionEmb(nn.Module):
def __init__(self, K, emb_size):
super(CyclicalPositionEmb, self).__init__()
self.fc = Linear(K, emb_size)
def forward(self, x):
'''
:param x: B * T * 1
:return: x
'''
pass # todo
INCREMENTAL_STATE_INSTANCE_ID = defaultdict(lambda: 0)
def _get_full_incremental_state_key(module_instance, key):
module_name = module_instance.__class__.__name__
# assign a unique ID to each module instance, so that incremental state is
# not shared across module instances
if not hasattr(module_instance, '_instance_id'):
INCREMENTAL_STATE_INSTANCE_ID[module_name] += 1
module_instance._instance_id = INCREMENTAL_STATE_INSTANCE_ID[module_name]
return '{}.{}.{}'.format(module_name, module_instance._instance_id, key)
def get_incremental_state(module, incremental_state, key):
"""Helper for getting incremental state for an nn.Module."""
full_key = _get_full_incremental_state_key(module, key)
if incremental_state is None or full_key not in incremental_state:
return None
return incremental_state[full_key]
def set_incremental_state(module, incremental_state, key, value):
"""Helper for setting incremental state for an nn.Module."""
if incremental_state is not None:
full_key = _get_full_incremental_state_key(module, key)
incremental_state[full_key] = value
def LayerNorm(normalized_shape, eps=1e-5, elementwise_affine=True, export=False):
return torch.nn.LayerNorm(normalized_shape, eps, elementwise_affine)
def Linear(in_features, out_features, bias=True):
m = nn.Linear(in_features, out_features, bias)
nn.init.xavier_uniform_(m.weight)
if bias:
nn.init.constant_(m.bias, 0.)
return m
class SinusoidalPositionalEmbedding(nn.Module):
"""This module produces sinusoidal positional embeddings of any length.
Padding symbols are ignored.
"""
def __init__(self, embedding_dim, padding_idx, init_size=1024):
super().__init__()
self.embedding_dim = embedding_dim
self.padding_idx = padding_idx
self.weights = SinusoidalPositionalEmbedding.get_embedding(
init_size,
embedding_dim,
padding_idx,
)
self.register_buffer('_float_tensor', torch.FloatTensor(1))
@staticmethod
def get_embedding(num_embeddings, embedding_dim, padding_idx=None):
"""Build sinusoidal embeddings.
This matches the implementation in tensor2tensor, but differs slightly
from the description in Section 3.5 of "Attention Is All You Need".
"""
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb)
emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
if embedding_dim % 2 == 1:
# zero pad
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
if padding_idx is not None:
emb[padding_idx, :] = 0
return emb
def forward(self, input, incremental_state=None, timestep=None, **kwargs):
"""Input is expected to be of size [bsz x seqlen]."""
bsz, seq_len = input.shape[:2]
max_pos = self.padding_idx + 1 + seq_len
if self.weights is None or max_pos > self.weights.size(0):
# recompute/expand embeddings if needed
self.weights = SinusoidalPositionalEmbedding.get_embedding(
max_pos,
self.embedding_dim,
self.padding_idx,
)
self.weights = self.weights.to(self._float_tensor)
if incremental_state is not None:
# positions is the same for every token when decoding a single step
pos = timestep.view(-1)[0] + 1 if timestep is not None else seq_len
return self.weights[self.padding_idx + pos, :].expand(bsz, 1, -1)
positions = make_positions(input, self.padding_idx)
return self.weights.index_select(0, positions.view(-1)).view(bsz, seq_len, -1).detach()
def max_positions(self):
"""Maximum number of supported positions."""
return int(1e5) # an arbitrary large number
class ConvTBC(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, padding=0):
super(ConvTBC, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.padding = padding
self.weight = torch.nn.Parameter(torch.Tensor(
self.kernel_size, in_channels, out_channels))
self.bias = torch.nn.Parameter(torch.Tensor(out_channels))
def forward(self, input):
return torch.conv_tbc(input.contiguous(), self.weight, self.bias, self.padding)
class EncConvLayer(nn.Module):
def __init__(self, c, kernel_size, dropout):
super().__init__()
self.layer_norm = LayerNorm(c)
conv = ConvTBC(c, c, kernel_size, padding=kernel_size // 2)
std = math.sqrt((4 * (1.0 - dropout)) / (kernel_size * c))
nn.init.normal_(conv.weight, mean=0, std=std)
nn.init.constant_(conv.bias, 0)
self.conv = nn.utils.weight_norm(conv, dim=2)
self.dropout = dropout
def forward(self, x, encoder_padding_mask=None, **kwargs):
layer_norm_training = kwargs.get('layer_norm_training', None)
if layer_norm_training is not None:
self.layer_norm.training = layer_norm_training
residual = x
if encoder_padding_mask is not None:
x = x.masked_fill(encoder_padding_mask.t().unsqueeze(-1), 0)
x = self.layer_norm(x)
x = self.conv(x)
x = F.relu(x)
x = F.dropout(x, self.dropout, self.training)
x = x + residual
return x
class MultiheadAttention(nn.Module):
def __init__(self, embed_dim, num_heads, kdim=None, vdim=None, dropout=0., bias=True,
add_bias_kv=False, add_zero_attn=False, self_attention=False,
encoder_decoder_attention=False):
super().__init__()
self.embed_dim = embed_dim
self.kdim = kdim if kdim is not None else embed_dim
self.vdim = vdim if vdim is not None else embed_dim
self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
self.scaling = self.head_dim ** -0.5
self.self_attention = self_attention
self.encoder_decoder_attention = encoder_decoder_attention
assert not self.self_attention or self.qkv_same_dim, 'Self-attention requires query, key and ' \
'value to be of the same size'
if self.qkv_same_dim:
self.in_proj_weight = Parameter(torch.Tensor(3 * embed_dim, embed_dim))
else:
self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim))
self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim))
self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim))
if bias:
self.in_proj_bias = Parameter(torch.Tensor(3 * embed_dim))
else:
self.register_parameter('in_proj_bias', None)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
if add_bias_kv:
self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim))
self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim))
else:
self.bias_k = self.bias_v = None
self.add_zero_attn = add_zero_attn
self.reset_parameters()
self.enable_torch_version = False
if hasattr(F, "multi_head_attention_forward"):
self.enable_torch_version = True
else:
self.enable_torch_version = False
def reset_parameters(self):
if self.qkv_same_dim:
nn.init.xavier_uniform_(self.in_proj_weight)
else:
nn.init.xavier_uniform_(self.k_proj_weight)
nn.init.xavier_uniform_(self.v_proj_weight)
nn.init.xavier_uniform_(self.q_proj_weight)
nn.init.xavier_uniform_(self.out_proj.weight)
if self.in_proj_bias is not None:
nn.init.constant_(self.in_proj_bias, 0.)
nn.init.constant_(self.out_proj.bias, 0.)
if self.bias_k is not None:
nn.init.xavier_normal_(self.bias_k)
if self.bias_v is not None:
nn.init.xavier_normal_(self.bias_v)
def forward(
self,
query, key, value,
key_padding_mask=None,
incremental_state=None,
need_weights=True,
static_kv=False,
attn_mask=None,
before_softmax=False,
need_head_weights=False,
enc_dec_attn_constraint_mask=None
):
"""Input shape: Time x Batch x Channel
Args:
key_padding_mask (ByteTensor, optional): mask to exclude
keys that are pads, of shape `(batch, src_len)`, where
padding elements are indicated by 1s.
need_weights (bool, optional): return the attention weights,
averaged over heads (default: False).
attn_mask (ByteTensor, optional): typically used to
implement causal attention, where the mask prevents the
attention from looking forward in time (default: None).
before_softmax (bool, optional): return the raw attention
weights and values before the attention softmax.
need_head_weights (bool, optional): return the attention
weights for each head. Implies *need_weights*. Default:
return the average attention weights over all heads.
"""
if need_head_weights:
need_weights = True
tgt_len, bsz, embed_dim = query.size()
assert embed_dim == self.embed_dim
assert list(query.size()) == [tgt_len, bsz, embed_dim]
if self.enable_torch_version and incremental_state is None and not static_kv:
if self.qkv_same_dim:
return F.multi_head_attention_forward(query, key, value,
self.embed_dim, self.num_heads,
self.in_proj_weight,
self.in_proj_bias, self.bias_k, self.bias_v,
self.add_zero_attn, self.dropout,
self.out_proj.weight, self.out_proj.bias,
self.training, key_padding_mask, need_weights,
attn_mask)
else:
return F.multi_head_attention_forward(query, key, value,
self.embed_dim, self.num_heads,
torch.empty([0]),
self.in_proj_bias, self.bias_k, self.bias_v,
self.add_zero_attn, self.dropout,
self.out_proj.weight, self.out_proj.bias,
self.training, key_padding_mask, need_weights,
attn_mask, use_separate_proj_weight=True,
q_proj_weight=self.q_proj_weight,
k_proj_weight=self.k_proj_weight,
v_proj_weight=self.v_proj_weight)
if incremental_state is not None:
saved_state = self._get_input_buffer(incremental_state)
if 'prev_key' in saved_state:
# previous time steps are cached - no need to recompute
# key and value if they are static
if static_kv:
assert self.encoder_decoder_attention and not self.self_attention
key = value = None
else:
saved_state = None
if self.self_attention:
# self-attention
q, k, v = self.in_proj_qkv(query)
elif self.encoder_decoder_attention:
# encoder-decoder attention
q = self.in_proj_q(query)
if key is None:
assert value is None
k = v = None
else:
k = self.in_proj_k(key)
v = self.in_proj_v(key)
else:
q = self.in_proj_q(query)
k = self.in_proj_k(key)
v = self.in_proj_v(value)
q *= self.scaling
if self.bias_k is not None:
assert self.bias_v is not None
k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)])
v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)])
if attn_mask is not None:
attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1)
if key_padding_mask is not None:
key_padding_mask = torch.cat(
[key_padding_mask, key_padding_mask.new_zeros(key_padding_mask.size(0), 1)], dim=1)
q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(0, 1)
if k is not None:
k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)
if v is not None:
v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)
if saved_state is not None:
# saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
if 'prev_key' in saved_state:
prev_key = saved_state['prev_key'].view(bsz * self.num_heads, -1, self.head_dim)
if static_kv:
k = prev_key
else:
k = torch.cat((prev_key, k), dim=1)
if 'prev_value' in saved_state:
prev_value = saved_state['prev_value'].view(bsz * self.num_heads, -1, self.head_dim)
if static_kv:
v = prev_value
else:
v = torch.cat((prev_value, v), dim=1)
if 'prev_key_padding_mask' in saved_state and saved_state['prev_key_padding_mask'] is not None:
prev_key_padding_mask = saved_state['prev_key_padding_mask']
if static_kv:
key_padding_mask = prev_key_padding_mask
else:
key_padding_mask = torch.cat((prev_key_padding_mask, key_padding_mask), dim=1)
saved_state['prev_key'] = k.view(bsz, self.num_heads, -1, self.head_dim)
saved_state['prev_value'] = v.view(bsz, self.num_heads, -1, self.head_dim)
saved_state['prev_key_padding_mask'] = key_padding_mask
self._set_input_buffer(incremental_state, saved_state)
src_len = k.size(1)
# This is part of a workaround to get around fork/join parallelism
# not supporting Optional types.
if key_padding_mask is not None and key_padding_mask.shape == torch.Size([]):
key_padding_mask = None
if key_padding_mask is not None:
assert key_padding_mask.size(0) == bsz
assert key_padding_mask.size(1) == src_len
if self.add_zero_attn:
src_len += 1
k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1)
v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1)
if attn_mask is not None:
attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1)
if key_padding_mask is not None:
key_padding_mask = torch.cat(
[key_padding_mask, torch.zeros(key_padding_mask.size(0), 1).type_as(key_padding_mask)], dim=1)
attn_weights = torch.bmm(q, k.transpose(1, 2))
attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz)
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]
if attn_mask is not None:
attn_mask = attn_mask.unsqueeze(0)
attn_weights += attn_mask
if enc_dec_attn_constraint_mask is not None: # bs x head x L_kv
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.masked_fill(
enc_dec_attn_constraint_mask.unsqueeze(2).bool(),
float('-inf'),
)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if key_padding_mask is not None:
# don't attend to padding symbols
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.masked_fill(
key_padding_mask.unsqueeze(1).unsqueeze(2),
float('-inf'),
)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_logits = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
if before_softmax:
return attn_weights, v
attn_weights_float = softmax(attn_weights, dim=-1)
attn_weights = attn_weights_float.type_as(attn_weights)
attn_probs = F.dropout(attn_weights_float.type_as(attn_weights), p=self.dropout, training=self.training)
attn = torch.bmm(attn_probs, v)
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
attn = self.out_proj(attn)
if need_weights:
attn_weights = attn_weights_float.view(bsz, self.num_heads, tgt_len, src_len).transpose(1, 0)
if not need_head_weights:
# average attention weights over heads
attn_weights = attn_weights.mean(dim=0)
else:
attn_weights = None
return attn, (attn_weights, attn_logits)
def in_proj_qkv(self, query):
return self._in_proj(query).chunk(3, dim=-1)
def in_proj_q(self, query):
if self.qkv_same_dim:
return self._in_proj(query, end=self.embed_dim)
else:
bias = self.in_proj_bias
if bias is not None:
bias = bias[:self.embed_dim]
return F.linear(query, self.q_proj_weight, bias)
def in_proj_k(self, key):
if self.qkv_same_dim:
return self._in_proj(key, start=self.embed_dim, end=2 * self.embed_dim)
else:
weight = self.k_proj_weight
bias = self.in_proj_bias
if bias is not None:
bias = bias[self.embed_dim:2 * self.embed_dim]
return F.linear(key, weight, bias)
def in_proj_v(self, value):
if self.qkv_same_dim:
return self._in_proj(value, start=2 * self.embed_dim)
else:
weight = self.v_proj_weight
bias = self.in_proj_bias
if bias is not None:
bias = bias[2 * self.embed_dim:]
return F.linear(value, weight, bias)
def _in_proj(self, input, start=0, end=None):
weight = self.in_proj_weight
bias = self.in_proj_bias
weight = weight[start:end, :]
if bias is not None:
bias = bias[start:end]
return F.linear(input, weight, bias)
def _get_input_buffer(self, incremental_state):
return get_incremental_state(
self,
incremental_state,
'attn_state',
) or {}
def _set_input_buffer(self, incremental_state, buffer):
set_incremental_state(
self,
incremental_state,
'attn_state',
buffer,
)
def apply_sparse_mask(self, attn_weights, tgt_len, src_len, bsz):
return attn_weights
def clear_buffer(self, incremental_state=None):
if incremental_state is not None:
saved_state = self._get_input_buffer(incremental_state)
if 'prev_key' in saved_state:
del saved_state['prev_key']
if 'prev_value' in saved_state:
del saved_state['prev_value']
self._set_input_buffer(incremental_state, saved_state)
class TransformerFFNLayer(nn.Module):
def __init__(self, hidden_size, filter_size, padding="SAME", kernel_size=1, dropout=0.):
super().__init__()
self.kernel_size = kernel_size
self.dropout = dropout
if kernel_size == 1:
self.ffn_1 = Linear(hidden_size, filter_size)
else:
if padding == 'SAME':
assert kernel_size % 2 == 1
self.first_offset = -((kernel_size - 1) // 2)
else:
assert padding == 'LEFT'
self.first_offset = -(kernel_size - 1)
self.last_offset = self.first_offset + kernel_size - 1
self.ffn_1 = nn.ModuleList()
for i in range(kernel_size):
self.ffn_1.append(Linear(hidden_size, filter_size, bias=(i == 0)))
self.ffn_2 = Linear(filter_size, hidden_size)
def forward(self, x, incremental_state=None):
# x: T x B x C
if incremental_state is not None:
saved_state = self._get_input_buffer(incremental_state)
if 'prev_input' in saved_state:
prev_input = saved_state['prev_input']
x = torch.cat((prev_input, x), dim=0)
x = x[-self.kernel_size:]
saved_state['prev_input'] = x
self._set_input_buffer(incremental_state, saved_state)
if self.kernel_size == 1:
x = self.ffn_1(x)
else:
padded = F.pad(x, (0, 0, 0, 0, -self.first_offset, self.last_offset))
results = []
for i in range(self.kernel_size):
shifted = padded[i:x.size(0) + i] if i else x
results.append(self.ffn_1[i](shifted))
res = sum(results)
x = res * self.kernel_size ** -0.5
if incremental_state is not None:
x = x[-1:]
x = F.relu(x)
x = F.dropout(x, self.dropout, training=self.training)
x = self.ffn_2(x)
return x
def _get_input_buffer(self, incremental_state):
return get_incremental_state(
self,
incremental_state,
'f',
) or {}
def _set_input_buffer(self, incremental_state, buffer):
set_incremental_state(
self,
incremental_state,
'f',
buffer,
)
def clear_buffer(self, incremental_state):
if incremental_state is not None:
saved_state = self._get_input_buffer(incremental_state)
if 'prev_input' in saved_state:
del saved_state['prev_input']
self._set_input_buffer(incremental_state, saved_state)
def fill_with_neg_inf(t):
"""FP16-compatible function that fills a tensor with -inf."""
return t.float().fill_(float('-inf')).type_as(t)
def fill_with_neg_inf2(t):
"""FP16-compatible function that fills a tensor with -inf."""
return t.float().fill_(-1e9).type_as(t)
class NewTransformerFFNLayer(nn.Module):
def __init__(self, hidden_size, filter_size, padding="SAME", kernel_size=1, dropout=0.):
super().__init__()
self.kernel_size = kernel_size
self.dropout = dropout
if padding == 'SAME':
self.ffn_1 = nn.Conv1d(hidden_size, filter_size, kernel_size, padding=kernel_size // 2)
elif padding == 'LEFT':
self.ffn_1 = nn.Sequential(
nn.ConstantPad1d((kernel_size - 1, 0), 0.0),
nn.Conv1d(hidden_size, filter_size, kernel_size)
)
self.ffn_2 = Linear(filter_size, hidden_size)
def forward(self, x, incremental_state=None):
# x: T x B x C
if incremental_state is not None:
saved_state = self._get_input_buffer(incremental_state)
if 'prev_input' in saved_state:
prev_input = saved_state['prev_input']
x = torch.cat((prev_input, x), dim=0)
x = x[-self.kernel_size:]
saved_state['prev_input'] = x
self._set_input_buffer(incremental_state, saved_state)
x = self.ffn_1(x.permute(1, 2, 0)).permute(2, 0, 1)
x = x * self.kernel_size ** -0.5
if incremental_state is not None:
x = x[-1:]
x = F.relu(x)
x = F.dropout(x, self.dropout, training=self.training)
x = self.ffn_2(x)
return x
def _get_input_buffer(self, incremental_state):
return get_incremental_state(
self,
incremental_state,
'f',
) or {}
def _set_input_buffer(self, incremental_state, buffer):
set_incremental_state(
self,
incremental_state,
'f',
buffer,
)
def clear_buffer(self, incremental_state):
if incremental_state is not None:
saved_state = self._get_input_buffer(incremental_state)
if 'prev_input' in saved_state:
del saved_state['prev_input']
self._set_input_buffer(incremental_state, saved_state)
class EncSALayer(nn.Module):
def __init__(self, c, num_heads, dropout, attention_dropout=0.1, relu_dropout=0.1,
kernel_size=9, padding='SAME'):
super().__init__()
self.c = c
self.dropout = dropout
self.layer_norm1 = LayerNorm(c)
self.self_attn = MultiheadAttention(
self.c, num_heads, self_attention=True, dropout=attention_dropout, bias=False,
)
self.layer_norm2 = LayerNorm(c)
self.ffn = TransformerFFNLayer(c, 4 * c, kernel_size=kernel_size, dropout=relu_dropout, padding=padding)
def forward(self, x, encoder_padding_mask=None, **kwargs):
layer_norm_training = kwargs.get('layer_norm_training', None)
if layer_norm_training is not None:
self.layer_norm1.training = layer_norm_training
self.layer_norm2.training = layer_norm_training
residual = x
x = self.layer_norm1(x)
x, _, = self.self_attn(
query=x,
key=x,
value=x,
key_padding_mask=encoder_padding_mask
)
x = F.dropout(x, self.dropout, training=self.training)
x = residual + x
x = x * (1 - encoder_padding_mask.float()).transpose(0, 1)[..., None]
residual = x
x = self.layer_norm2(x)
x = self.ffn(x)
x = F.dropout(x, self.dropout, training=self.training)
x = residual + x
x = x * (1 - encoder_padding_mask.float()).transpose(0, 1)[..., None]
return x
class EncLocalSALayer(nn.Module):
def __init__(self, c, num_heads, dropout, attention_dropout=0.1, relu_dropout=0.1):
super().__init__()
self.c = c
self.dropout = dropout
self.layer_norm1 = LayerNorm(c)
self.self_attn = MultiheadAttention(
self.c, num_heads, self_attention=True, dropout=attention_dropout, bias=False,
)
self.layer_norm2 = LayerNorm(c)
self.ffn = TransformerFFNLayer(c, 4 * c, kernel_size=9, dropout=relu_dropout)
self.chunk_size = 101
def forward(self, x, encoder_padding_mask=None, **kwargs):
layer_norm_training = kwargs.get('layer_norm_training', None)
if layer_norm_training is not None:
self.layer_norm1.training = layer_norm_training
self.layer_norm2.training = layer_norm_training
residual = x
x = self.layer_norm1(x)
states = []
T = x.shape[0]
all_neg_inf = fill_with_neg_inf2(x.new(T, T))
half_chunk_size = self.chunk_size // 2
attn_mask = torch.triu(all_neg_inf, half_chunk_size + 1) \
+ torch.tril(all_neg_inf, -half_chunk_size - 1)
encoder_padding_mask = encoder_padding_mask.data
for i in range(0, x.shape[0], half_chunk_size + 1):
k_start = max(0, i - half_chunk_size)
k_end = min(x.shape[0], i + self.chunk_size)
kv = x[k_start:k_end]
q = x[i:i + half_chunk_size + 1]
q_nonpadding = (1 - encoder_padding_mask[:, i:i + half_chunk_size + 1].float()).data
encoder_padding_mask_ = encoder_padding_mask[:, k_start:k_end].data
encoder_padding_mask_[q_nonpadding.sum(-1) == 0, :] = 0
x_, _, = self.self_attn(
query=q,
key=kv,
value=kv,
key_padding_mask=encoder_padding_mask_,
attn_mask=attn_mask[i:i + half_chunk_size + 1, k_start:k_end]
)
x_ = x_ * (1 - q_nonpadding.T[:, :, None])
states.append(x_)
x = torch.cat(states)
x = F.dropout(x, self.dropout, training=self.training)
x = residual + x
residual = x
x = self.layer_norm2(x)
x = self.ffn(x)
x = F.dropout(x, self.dropout, training=self.training)
x = residual + x
return x
class EncLSTMLayer(nn.Module):
def __init__(self, c, dropout):
super().__init__()
self.c = c
self.layer_norm = LayerNorm(c)
self.lstm = nn.LSTM(c, c, 1, bidirectional=True)
self.out_proj = Linear(2 * c, c)
self.dropout = dropout
def forward(self, x, **kwargs):
layer_norm_training = kwargs.get('layer_norm_training', None)
if layer_norm_training is not None:
self.layer_norm.training = layer_norm_training
self.lstm.flatten_parameters()
residual = x
x = self.layer_norm(x)
x, _ = self.lstm(x)
x = self.out_proj(x)
x = F.dropout(x, self.dropout, training=self.training)
x = residual + x
return x
class ConvAttentionLayer(nn.Module):
def __init__(self, c, hidden_size, dropout=0.):
super().__init__()
self.in_projection = Linear(c, hidden_size)
self.out_projection = Linear(hidden_size, c)
self.dropout = dropout
def forward(self, x, key, value, encoder_padding_mask=None, enc_dec_attn_constraint_mask=None):
# x, key, value : T x B x C
# attention
query = self.in_projection(x)
attn_weights = torch.bmm(query.transpose(0, 1), key.transpose(0, 1).transpose(1, 2))
# don't attend over padding
if encoder_padding_mask is not None:
attn_weights = attn_weights.masked_fill(
encoder_padding_mask.unsqueeze(1),
float('-inf')
).type_as(attn_weights) # FP16 support: cast to float and back
if enc_dec_attn_constraint_mask is not None:
attn_weights = attn_weights.masked_fill(
enc_dec_attn_constraint_mask.bool(),
float('-inf'),
).type_as(attn_weights)
attn_logits = attn_weights
# softmax over last dim
sz = attn_weights.size()
attn_scores = F.softmax(attn_weights.view(sz[0] * sz[1], sz[2]), dim=1)
attn_scores = attn_scores.view(sz)
attn_scores = F.dropout(attn_scores, p=self.dropout, training=self.training)
attn = torch.bmm(attn_scores, value.transpose(0, 1)).transpose(0, 1)
# scale attention output (respecting potentially different lengths)
s = value.size(0)
if encoder_padding_mask is None:
attn = attn * (s * math.sqrt(1.0 / s))
else:
s = s - encoder_padding_mask.type_as(attn).sum(dim=1, keepdim=True) # exclude padding
s = s.transpose(0, 1).unsqueeze(-1)
attn = attn * (s * s.rsqrt())
# project back
attn = self.out_projection(attn)
return attn, attn_scores, attn_logits
OPERATIONS_ENCODER = { # c = hidden size
1: lambda c, dropout: EncConvLayer(c, 1, dropout), # h, num_heads, dropout
2: lambda c, dropout: EncConvLayer(c, 5, dropout),
3: lambda c, dropout: EncConvLayer(c, 9, dropout),
4: lambda c, dropout: EncConvLayer(c, 13, dropout),
5: lambda c, dropout: EncConvLayer(c, 17, dropout),
6: lambda c, dropout: EncConvLayer(c, 21, dropout),
7: lambda c, dropout: EncConvLayer(c, 25, dropout),
8: lambda c, dropout: EncSALayer(c, 8, dropout=dropout,
attention_dropout=0.0, relu_dropout=dropout,
kernel_size=9,
padding='SAME'),
9: lambda c, dropout: EncSALayer(c, 4, dropout),
10: lambda c, dropout: EncSALayer(c, 8, dropout),
11: lambda c, dropout: EncLocalSALayer(c, 2, dropout),
12: lambda c, dropout: EncLSTMLayer(c, dropout),
13: lambda c, dropout, g_bias, tao: EncGausSALayer(c, 1, dropout, gaus_bias=g_bias, gaus_tao=tao),
14: lambda c, dropout: EncSALayer(c, 2, dropout, kernel_size=1),
15: lambda c, dropout: EncSALayer(c, 2, dropout, kernel_size=15),
}