TTTS / ttts /diffusion /aa_model.py
mrfakename's picture
Add source code
4ee33aa
raw
history blame
15.1 kB
from ttts.diffusion.ldm.modules.diffusionmodules.util import (
conv_nd,
linear,
normalization,
zero_module,
timestep_embedding,
)
from ttts.diffusion.ldm.modules.attention import SpatialTransformer
from ttts.diffusion.ldm.modules.diffusionmodules.openaimodel import TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock, Upsample, convert_module_to_f16, convert_module_to_f32
from ttts.diffusion.ldm.util import exists
import torch as th
from einops import rearrange, repeat
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import autocast
from ttts.diffusion.cldm.cond_emb import CLIP
from ttts.utils.utils import normalization, AttentionBlock
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
class BaseModel(nn.Module):
"""
The full UNet model with attention and timestep embedding.
:param in_channels: channels in the input Tensor.
:param model_channels: base channel count for the model.
:param out_channels: channels in the output Tensor.
:param num_res_blocks: number of residual blocks per downsample.
:param attention_resolutions: a collection of downsample rates at which
attention will take place. May be a set, list, or tuple.
For example, if this contains 4, then at 4x downsampling, attention
will be used.
:param dropout: the dropout probability.
:param channel_mult: channel multiplier for each level of the UNet.
:param conv_resample: if True, use learned convolutions for upsampling and
downsampling.
:param dims: determines if the signal is 1D, 2D, or 3D.
:param num_classes: if specified (as an int), then this model will be
class-conditional with `num_classes` classes.
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
:param num_heads: the number of attention heads in each attention layer.
:param num_heads_channels: if specified, ignore num_heads and instead use
a fixed channel width per attention head.
:param num_heads_upsample: works with num_heads to set a different number
of heads for upsampling. Deprecated.
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
:param resblock_updown: use residual blocks for up/downsampling.
:param use_new_attention_order: use a different attention pattern for potentially
increased efficiency.
"""
def __init__(
self,
in_channels,
model_channels,
out_channels,
num_res_blocks,
attention_resolutions,
dropout=0,
channel_mult=(1, 2, 4, 8),
conv_resample=True,
dims=1,
num_classes=None,
use_checkpoint=False,
use_fp16=False,
num_heads=-1,
num_head_channels=-1,
num_heads_upsample=-1,
use_scale_shift_norm=False,
resblock_updown=False,
use_new_attention_order=False,
use_spatial_transformer=False, # custom transformer support
transformer_depth=1, # custom transformer support
context_dim=None, # custom transformer support
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
legacy=True,
disable_self_attentions=None,
num_attention_blocks=None,
disable_middle_self_attn=False,
use_linear_in_transformer=False,
):
super().__init__()
if use_spatial_transformer:
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
if context_dim is not None:
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
from omegaconf.listconfig import ListConfig
if type(context_dim) == ListConfig:
context_dim = list(context_dim)
if num_heads_upsample == -1:
num_heads_upsample = num_heads
if num_heads == -1:
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
if num_head_channels == -1:
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
self.in_channels = in_channels
self.model_channels = model_channels
self.out_channels = out_channels
if isinstance(num_res_blocks, int):
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
else:
if len(num_res_blocks) != len(channel_mult):
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
"as a list/tuple (per-level) with the same length as channel_mult")
self.num_res_blocks = num_res_blocks
if disable_self_attentions is not None:
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
assert len(disable_self_attentions) == len(channel_mult)
if num_attention_blocks is not None:
assert len(num_attention_blocks) == len(self.num_res_blocks)
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
f"attention will still not be set.")
self.attention_resolutions = attention_resolutions
self.dropout = dropout
self.channel_mult = channel_mult
self.conv_resample = conv_resample
self.num_classes = num_classes
self.use_checkpoint = use_checkpoint
self.dtype = th.float16 if use_fp16 else th.float32
self.num_heads = num_heads
self.num_head_channels = num_head_channels
self.num_heads_upsample = num_heads_upsample
self.predict_codebook_ids = n_embed is not None
time_embed_dim = model_channels * 4
self.time_embed = nn.Sequential(
linear(model_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
if self.num_classes is not None:
if isinstance(self.num_classes, int):
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
elif self.num_classes == "continuous":
print("setting up linear c_adm embedding layer")
self.label_emb = nn.Linear(1, time_embed_dim)
else:
raise ValueError()
self.blocks = nn.ModuleList(
[
TimestepEmbedSequential(
conv_nd(dims, in_channels, model_channels, 3, padding=1)
)
]
)
self._feature_size = model_channels
input_block_chans = [model_channels]
ch = model_channels
ds = 1
for level, mult in enumerate(channel_mult):
for nr in range(self.num_res_blocks[level]):
layers = [
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=mult * model_channels,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
)
]
ch = mult * model_channels
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
#num_heads = 1
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
if exists(disable_self_attentions):
disabled_sa = disable_self_attentions[level]
else:
disabled_sa = False
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
layers.append(
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else SpatialTransformer(
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint
)
)
self.blocks.append(TimestepEmbedSequential(*layers))
self._feature_size += ch
input_block_chans.append(ch)
# if level != len(channel_mult) - 1:
out_ch = ch
self.blocks.append(
TimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=out_ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
)
)
)
ch = out_ch
input_block_chans.append(ch)
# ds *= 2
self._feature_size += ch
self.out = nn.Sequential(
normalization(ch),
nn.SiLU(),
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
)
self.hint_converter = nn.Conv1d(1024,model_channels,3,padding=1)
def convert_to_fp16(self):
"""
Convert the torso of the model to float16.
"""
self.blocks.apply(convert_module_to_f16)
# self.input_blocks.apply(convert_module_to_f16)
# self.middle_block.apply(convert_module_to_f16)
# self.output_blocks.apply(convert_module_to_f16)
def convert_to_fp32(self):
"""
Convert the torso of the model to float32.
"""
self.blocks.apply(convert_module_to_f32)
# self.input_blocks.apply(convert_module_to_f32)
# self.middle_block.apply(convert_module_to_f32)
# self.output_blocks.apply(convert_module_to_f32)
def forward(self, x, timesteps=None, context=None, hint=None, control=None, **kwargs):
hs = []
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
emb = self.time_embed(t_emb)
# guided_hint = self.input_hint_block(hint, emb, context)
hint = self.hint_converter(hint)
# context = self.context_proj(context).unsqueeze(-1)
# scale, shift = torch.chunk(context, 2, dim = 1)
# hint = hint*(1+scale)+shift
h = x.type(self.dtype)
flag=0
for module in self.blocks:
if flag==0:
h = module(h, emb, context, control.pop(0))
h += hint
flag=1
else:
h = module(h, emb, context, control.pop(0))
hs.append(h)
h = h.type(x.dtype)
return self.out(h)
class ReferenceNet(BaseModel):
def forward(self, x, timesteps=None, context=None, **kwargs):
hs = []
control = []
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
emb = self.time_embed(t_emb)
h = x.type(self.dtype)
for module in self.blocks:
h,refer = module(h, emb, context,return_refer=True)
hs.append(h)
control.append(refer)
h = h.type(x.dtype)
# h = self.out(h)
return control
TACOTRON_MEL_MAX = 5.5451774444795624753378569716654
TACOTRON_MEL_MIN = -16.118095650958319788125940182791
# TACOTRON_MEL_MIN = -11.512925464970228420089957273422
CVEC_MAX = 5.5451774444795624753378569716654
CVEC_MIN = -5.5451774444795624753378569716654
def denormalize_tacotron_mel(norm_mel):
return norm_mel/0.18215
def normalize_tacotron_mel(mel):
mel = torch.clamp(mel, min=-TACOTRON_MEL_MAX)
return mel*0.18215
def denormalize_cvec(norm_mel):
return norm_mel/0.11111
def normalize_cvec(mel):
return mel*0.11111
class AA_diffusion(nn.Module):
def __init__(self, config, *args, **kwargs):
super().__init__(*args, **kwargs)
self.refer_enc = CLIP(**config['clip'])
self.refer_model = ReferenceNet(**config['refer_diffusion'])
self.base_model = BaseModel(**config['base_diffusion'])
print("base model params:", count_parameters(self.base_model))
self.unconditioned_percentage = 0.1
# self.control_model = instantiate_from_config(control_stage_config)
# self.refer_model = instantiate_from_config(refer_config)
self.control_scales = [1.0] * 13
# self.unconditioned_embedding = nn.Parameter(torch.randn(1,100,1))
self.unconditioned_cat_embedding = nn.Parameter(torch.randn(1,1024,1))
def get_uncond_batch(self, code_emb):
unconditioned_batches = torch.zeros((code_emb.shape[0], 1, 1), device=code_emb.device)
# Mask out the conditioning branch for whole batch elements, implementing something similar to classifier-free guidance.
if self.training and self.unconditioned_percentage > 0:
unconditioned_batches = torch.rand((code_emb.shape[0], 1, 1),
device=code_emb.device) < self.unconditioned_percentage
code_emb = torch.where(unconditioned_batches, self.unconditioned_cat_embedding.repeat(code_emb.shape[0], 1, 1),
code_emb)
return code_emb
def forward(self, x, t, hint, refer, conditioning_free=False):
if conditioning_free:
hint = self.unconditioned_cat_embedding.repeat(x.shape[0], 1, x.shape[-1])
else:
if self.training:
hint = self.get_uncond_batch(hint)
hint = F.interpolate(hint, size=x.shape[-1], mode='nearest')
refer_cross = self.refer_enc(refer)
refer_self = self.refer_model(refer, timesteps = t, context = refer_cross)
eps = self.base_model(x, timesteps=t, context=refer_cross, hint=hint, control=refer_self)
return eps