Spaces:
Sleeping
Sleeping
from ttts.diffusion.ldm.modules.diffusionmodules.util import ( | |
conv_nd, | |
linear, | |
normalization, | |
zero_module, | |
timestep_embedding, | |
) | |
from ttts.diffusion.ldm.modules.attention import SpatialTransformer | |
from ttts.diffusion.ldm.modules.diffusionmodules.openaimodel import TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock, Upsample, convert_module_to_f16, convert_module_to_f32 | |
from ttts.diffusion.ldm.util import exists | |
import torch as th | |
from einops import rearrange, repeat | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch import autocast | |
from ttts.diffusion.cldm.cond_emb import CLIP | |
from ttts.utils.utils import normalization, AttentionBlock | |
def count_parameters(model): | |
return sum(p.numel() for p in model.parameters() if p.requires_grad) | |
class BaseModel(nn.Module): | |
""" | |
The full UNet model with attention and timestep embedding. | |
:param in_channels: channels in the input Tensor. | |
:param model_channels: base channel count for the model. | |
:param out_channels: channels in the output Tensor. | |
:param num_res_blocks: number of residual blocks per downsample. | |
:param attention_resolutions: a collection of downsample rates at which | |
attention will take place. May be a set, list, or tuple. | |
For example, if this contains 4, then at 4x downsampling, attention | |
will be used. | |
:param dropout: the dropout probability. | |
:param channel_mult: channel multiplier for each level of the UNet. | |
:param conv_resample: if True, use learned convolutions for upsampling and | |
downsampling. | |
:param dims: determines if the signal is 1D, 2D, or 3D. | |
:param num_classes: if specified (as an int), then this model will be | |
class-conditional with `num_classes` classes. | |
:param use_checkpoint: use gradient checkpointing to reduce memory usage. | |
:param num_heads: the number of attention heads in each attention layer. | |
:param num_heads_channels: if specified, ignore num_heads and instead use | |
a fixed channel width per attention head. | |
:param num_heads_upsample: works with num_heads to set a different number | |
of heads for upsampling. Deprecated. | |
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism. | |
:param resblock_updown: use residual blocks for up/downsampling. | |
:param use_new_attention_order: use a different attention pattern for potentially | |
increased efficiency. | |
""" | |
def __init__( | |
self, | |
in_channels, | |
model_channels, | |
out_channels, | |
num_res_blocks, | |
attention_resolutions, | |
dropout=0, | |
channel_mult=(1, 2, 4, 8), | |
conv_resample=True, | |
dims=1, | |
num_classes=None, | |
use_checkpoint=False, | |
use_fp16=False, | |
num_heads=-1, | |
num_head_channels=-1, | |
num_heads_upsample=-1, | |
use_scale_shift_norm=False, | |
resblock_updown=False, | |
use_new_attention_order=False, | |
use_spatial_transformer=False, # custom transformer support | |
transformer_depth=1, # custom transformer support | |
context_dim=None, # custom transformer support | |
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model | |
legacy=True, | |
disable_self_attentions=None, | |
num_attention_blocks=None, | |
disable_middle_self_attn=False, | |
use_linear_in_transformer=False, | |
): | |
super().__init__() | |
if use_spatial_transformer: | |
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...' | |
if context_dim is not None: | |
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' | |
from omegaconf.listconfig import ListConfig | |
if type(context_dim) == ListConfig: | |
context_dim = list(context_dim) | |
if num_heads_upsample == -1: | |
num_heads_upsample = num_heads | |
if num_heads == -1: | |
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' | |
if num_head_channels == -1: | |
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' | |
self.in_channels = in_channels | |
self.model_channels = model_channels | |
self.out_channels = out_channels | |
if isinstance(num_res_blocks, int): | |
self.num_res_blocks = len(channel_mult) * [num_res_blocks] | |
else: | |
if len(num_res_blocks) != len(channel_mult): | |
raise ValueError("provide num_res_blocks either as an int (globally constant) or " | |
"as a list/tuple (per-level) with the same length as channel_mult") | |
self.num_res_blocks = num_res_blocks | |
if disable_self_attentions is not None: | |
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not | |
assert len(disable_self_attentions) == len(channel_mult) | |
if num_attention_blocks is not None: | |
assert len(num_attention_blocks) == len(self.num_res_blocks) | |
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks)))) | |
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. " | |
f"This option has LESS priority than attention_resolutions {attention_resolutions}, " | |
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, " | |
f"attention will still not be set.") | |
self.attention_resolutions = attention_resolutions | |
self.dropout = dropout | |
self.channel_mult = channel_mult | |
self.conv_resample = conv_resample | |
self.num_classes = num_classes | |
self.use_checkpoint = use_checkpoint | |
self.dtype = th.float16 if use_fp16 else th.float32 | |
self.num_heads = num_heads | |
self.num_head_channels = num_head_channels | |
self.num_heads_upsample = num_heads_upsample | |
self.predict_codebook_ids = n_embed is not None | |
time_embed_dim = model_channels * 4 | |
self.time_embed = nn.Sequential( | |
linear(model_channels, time_embed_dim), | |
nn.SiLU(), | |
linear(time_embed_dim, time_embed_dim), | |
) | |
if self.num_classes is not None: | |
if isinstance(self.num_classes, int): | |
self.label_emb = nn.Embedding(num_classes, time_embed_dim) | |
elif self.num_classes == "continuous": | |
print("setting up linear c_adm embedding layer") | |
self.label_emb = nn.Linear(1, time_embed_dim) | |
else: | |
raise ValueError() | |
self.blocks = nn.ModuleList( | |
[ | |
TimestepEmbedSequential( | |
conv_nd(dims, in_channels, model_channels, 3, padding=1) | |
) | |
] | |
) | |
self._feature_size = model_channels | |
input_block_chans = [model_channels] | |
ch = model_channels | |
ds = 1 | |
for level, mult in enumerate(channel_mult): | |
for nr in range(self.num_res_blocks[level]): | |
layers = [ | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels=mult * model_channels, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
) | |
] | |
ch = mult * model_channels | |
if ds in attention_resolutions: | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
if legacy: | |
#num_heads = 1 | |
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels | |
if exists(disable_self_attentions): | |
disabled_sa = disable_self_attentions[level] | |
else: | |
disabled_sa = False | |
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: | |
layers.append( | |
AttentionBlock( | |
ch, | |
use_checkpoint=use_checkpoint, | |
num_heads=num_heads, | |
num_head_channels=dim_head, | |
use_new_attention_order=use_new_attention_order, | |
) if not use_spatial_transformer else SpatialTransformer( | |
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, | |
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, | |
use_checkpoint=use_checkpoint | |
) | |
) | |
self.blocks.append(TimestepEmbedSequential(*layers)) | |
self._feature_size += ch | |
input_block_chans.append(ch) | |
# if level != len(channel_mult) - 1: | |
out_ch = ch | |
self.blocks.append( | |
TimestepEmbedSequential( | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels=out_ch, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
) | |
) | |
) | |
ch = out_ch | |
input_block_chans.append(ch) | |
# ds *= 2 | |
self._feature_size += ch | |
self.out = nn.Sequential( | |
normalization(ch), | |
nn.SiLU(), | |
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)), | |
) | |
self.hint_converter = nn.Conv1d(1024,model_channels,3,padding=1) | |
def convert_to_fp16(self): | |
""" | |
Convert the torso of the model to float16. | |
""" | |
self.blocks.apply(convert_module_to_f16) | |
# self.input_blocks.apply(convert_module_to_f16) | |
# self.middle_block.apply(convert_module_to_f16) | |
# self.output_blocks.apply(convert_module_to_f16) | |
def convert_to_fp32(self): | |
""" | |
Convert the torso of the model to float32. | |
""" | |
self.blocks.apply(convert_module_to_f32) | |
# self.input_blocks.apply(convert_module_to_f32) | |
# self.middle_block.apply(convert_module_to_f32) | |
# self.output_blocks.apply(convert_module_to_f32) | |
def forward(self, x, timesteps=None, context=None, hint=None, control=None, **kwargs): | |
hs = [] | |
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) | |
emb = self.time_embed(t_emb) | |
# guided_hint = self.input_hint_block(hint, emb, context) | |
hint = self.hint_converter(hint) | |
# context = self.context_proj(context).unsqueeze(-1) | |
# scale, shift = torch.chunk(context, 2, dim = 1) | |
# hint = hint*(1+scale)+shift | |
h = x.type(self.dtype) | |
flag=0 | |
for module in self.blocks: | |
if flag==0: | |
h = module(h, emb, context, control.pop(0)) | |
h += hint | |
flag=1 | |
else: | |
h = module(h, emb, context, control.pop(0)) | |
hs.append(h) | |
h = h.type(x.dtype) | |
return self.out(h) | |
class ReferenceNet(BaseModel): | |
def forward(self, x, timesteps=None, context=None, **kwargs): | |
hs = [] | |
control = [] | |
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) | |
emb = self.time_embed(t_emb) | |
h = x.type(self.dtype) | |
for module in self.blocks: | |
h,refer = module(h, emb, context,return_refer=True) | |
hs.append(h) | |
control.append(refer) | |
h = h.type(x.dtype) | |
# h = self.out(h) | |
return control | |
TACOTRON_MEL_MAX = 5.5451774444795624753378569716654 | |
TACOTRON_MEL_MIN = -16.118095650958319788125940182791 | |
# TACOTRON_MEL_MIN = -11.512925464970228420089957273422 | |
CVEC_MAX = 5.5451774444795624753378569716654 | |
CVEC_MIN = -5.5451774444795624753378569716654 | |
def denormalize_tacotron_mel(norm_mel): | |
return norm_mel/0.18215 | |
def normalize_tacotron_mel(mel): | |
mel = torch.clamp(mel, min=-TACOTRON_MEL_MAX) | |
return mel*0.18215 | |
def denormalize_cvec(norm_mel): | |
return norm_mel/0.11111 | |
def normalize_cvec(mel): | |
return mel*0.11111 | |
class AA_diffusion(nn.Module): | |
def __init__(self, config, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.refer_enc = CLIP(**config['clip']) | |
self.refer_model = ReferenceNet(**config['refer_diffusion']) | |
self.base_model = BaseModel(**config['base_diffusion']) | |
print("base model params:", count_parameters(self.base_model)) | |
self.unconditioned_percentage = 0.1 | |
# self.control_model = instantiate_from_config(control_stage_config) | |
# self.refer_model = instantiate_from_config(refer_config) | |
self.control_scales = [1.0] * 13 | |
# self.unconditioned_embedding = nn.Parameter(torch.randn(1,100,1)) | |
self.unconditioned_cat_embedding = nn.Parameter(torch.randn(1,1024,1)) | |
def get_uncond_batch(self, code_emb): | |
unconditioned_batches = torch.zeros((code_emb.shape[0], 1, 1), device=code_emb.device) | |
# Mask out the conditioning branch for whole batch elements, implementing something similar to classifier-free guidance. | |
if self.training and self.unconditioned_percentage > 0: | |
unconditioned_batches = torch.rand((code_emb.shape[0], 1, 1), | |
device=code_emb.device) < self.unconditioned_percentage | |
code_emb = torch.where(unconditioned_batches, self.unconditioned_cat_embedding.repeat(code_emb.shape[0], 1, 1), | |
code_emb) | |
return code_emb | |
def forward(self, x, t, hint, refer, conditioning_free=False): | |
if conditioning_free: | |
hint = self.unconditioned_cat_embedding.repeat(x.shape[0], 1, x.shape[-1]) | |
else: | |
if self.training: | |
hint = self.get_uncond_batch(hint) | |
hint = F.interpolate(hint, size=x.shape[-1], mode='nearest') | |
refer_cross = self.refer_enc(refer) | |
refer_self = self.refer_model(refer, timesteps = t, context = refer_cross) | |
eps = self.base_model(x, timesteps=t, context=refer_cross, hint=hint, control=refer_self) | |
return eps | |