File size: 11,154 Bytes
4ee33aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import os
from pathlib import Path
import torch.nn.functional as F
from omegaconf import OmegaConf
import torch
import torchaudio
from tqdm.auto import tqdm
from dataset import DiffusionCollater, DiffusionDataset
from ldm.util import instantiate_from_config
from ttts.utils.diffusion import SpacedDiffusion, space_timesteps, get_named_beta_schedule
from ttts.utils.utils import clean_checkpoints, plot_spectrogram_to_numpy, summarize
from accelerate import Accelerator
from vocos import Vocos
from ttts.AA_diffusion.cldm.cldm import denormalize_tacotron_mel
from torch.utils.data import DataLoader
from torch.optim import AdamW
from datetime import datetime
from ttts.utils.infer_utils import load_model
# import utils
from torch.utils.tensorboard import SummaryWriter

def count_parameters(model):
    return sum(p.numel() for p in model.parameters() if p.requires_grad)
def get_grad_norm(model):
    total_norm = 0
    for name,p in model.named_parameters():
        try:
            param_norm = p.grad.data.norm(2)
            total_norm += param_norm.item() ** 2
        except:
            print(name)
    total_norm = total_norm ** (1. / 2) 
    return total_norm
def cycle(dl):
    while True:
        for data in dl:
            yield data
def create_model(config_path):
    config = OmegaConf.load(config_path)
    model = instantiate_from_config(config.model).cpu()
    print(f'Loaded model config from [{config_path}]')
    return model
def get_state_dict(d):
    return d.get('state_dict', d)
def load_state_dict(ckpt_path, location='cpu'):
    _, extension = os.path.splitext(ckpt_path)
    if extension.lower() == ".safetensors":
        import safetensors.torch
        state_dict = safetensors.torch.load_file(ckpt_path, device=location)
    else:
        state_dict = get_state_dict(torch.load(ckpt_path, map_location=torch.device(location)))
    state_dict = get_state_dict(state_dict)
    print(f'Loaded state_dict from [{ckpt_path}]')
    return state_dict
class Trainer(object):
    def __init__(
        self,
        cfg_path = 'ttts/AA_diffusion/config.yaml',
    ):
        super().__init__()

        self.cfg = OmegaConf.load(cfg_path)
        self.accelerator = Accelerator()
        # model
        self.vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
        self.gpt = load_model('gpt',self.cfg['dataset']['gpt_path'],'ttts/gpt/config.json','cuda')
        self.model = create_model(cfg_path)
        self.mel_length_compression = 4
        print("model params:", count_parameters(self.model))
        # sampling and training hyperparameters
        self.save_and_sample_every = self.cfg['train']['save_and_sample_every']
        self.gradient_accumulate_every = self.cfg['train']['gradient_accumulate_every']
        self.train_num_steps = self.cfg['train']['train_num_steps']

        # dataset and dataloader
        self.dataset = DiffusionDataset(self.cfg)
        dl = DataLoader(self.dataset, **self.cfg['dataloader'], collate_fn=DiffusionCollater())

        dl = self.accelerator.prepare(dl)
        self.dl = cycle(dl)
        # optimizer

        self.opt = AdamW(self.model.parameters(), lr = self.cfg['train']['train_lr'], betas = self.cfg['train']['adam_betas'])

        # for logging results in a folder periodically

        if self.accelerator.is_main_process:
            # eval_ds = TestDataset(self.cfg['data']['val_files'], self.cfg, self.vocos)
            # self.eval_dl = DataLoader(eval_ds, batch_size = 1, shuffle = False, num_workers = self.cfg['train']['num_workers'])
            # self.eval_dl = iter(cycle(self.eval_dl))

            now = datetime.now()
            self.logs_folder = Path(self.cfg['train']['logs_folder']+'/'+now.strftime("%Y-%m-%d-%H-%M-%S"))
            self.logs_folder.mkdir(exist_ok = True, parents=True)

        # step counter state

        self.step = 0

        # prepare model, dataloader, optimizer with accelerator
        self.model, self.opt = self.accelerator.prepare(self.model, self.opt)

    @property
    def device(self):
        return self.accelerator.device

    def save(self, milestone):
        if not self.accelerator.is_local_main_process:
            return

        data = {
            'step': self.step,
            'model': self.accelerator.get_state_dict(self.model),
        }

        torch.save(data, str(self.logs_folder / f'model-{milestone}.pt'))

    def load(self, model_path):
        accelerator = self.accelerator
        device = accelerator.device

        data = torch.load(model_path, map_location=device)

        self.step = data['step']

        saved_state_dict = data['model']
        model = self.accelerator.unwrap_model(self.model)
        # del saved_state_dict['cond_stage_model.visual.positional_embedding']
        # del saved_state_dict['cond_stage_model.visual.conv1.weight']
        model.load_state_dict(saved_state_dict)

    def train(self):
        # print(1)
        accelerator = self.accelerator
        device = accelerator.device

        if accelerator.is_main_process:
            writer = SummaryWriter(log_dir=self.logs_folder)
            writer_eval = SummaryWriter(log_dir=os.path.join(self.logs_folder, "eval"))

        with tqdm(initial = self.step, total = self.train_num_steps, disable = not accelerator.is_main_process) as pbar:

            while self.step < self.train_num_steps:

                # with torch.autograd.detect_anomaly():
                for _ in range(self.gradient_accumulate_every):
                    data = next(self.dl)
                    data = {k: v.to(self.device) for k, v in data.items()}
                    with torch.no_grad():
                        latent = self.gpt(data['padded_mel_refer'], data['padded_text'],
                            torch.tensor([data['padded_text'].shape[-1]], device=device), data['padded_mel_code'],
                            torch.tensor([data['padded_mel_code'].shape[-1]*self.mel_length_compression], device=device),
                            return_latent=True, clip_inputs=False).transpose(1,2)
                    latent = F.interpolate(latent, size=data['padded_mel'].shape[-1], mode='nearest')
                    data_ =  dict(jpg=data['padded_mel'], txt=data['padded_mel_refer'], hint=latent)
                    with self.accelerator.autocast():
                        loss = accelerator.unwrap_model(self.model).training_step(data_)

                        model = accelerator.unwrap_model(self.model)
                        unused_params =[]
                        # unused_params.extend(list(model.refer_model.out.parameters()))
                        unused_params.extend(list(model.cond_stage_model.visual.proj))
                        # unused_params.extend(list(model.refer_model.output_blocks.parameters()))
                        # unused_params.extend(list(model.refer_model.output_blocks.parameters()))
                        unused_params.extend(list(model.unconditioned_embedding))
                        unused_params.extend(list(model.unconditioned_cat_embedding))
                        extraneous_addition = 0
                        for p in unused_params:
                            extraneous_addition = extraneous_addition + p.mean()
                        loss = loss + 0*extraneous_addition
                        loss = loss / self.gradient_accumulate_every
                    self.accelerator.backward(loss)

                grad_norm = get_grad_norm(self.model)
                accelerator.clip_grad_norm_(self.model.parameters(), 1.0)
                pbar.set_description(f'loss: {loss:.4f}')

                accelerator.wait_for_everyone()
                if (self.step+1)%self.gradient_accumulate_every==0:
                    self.opt.step()
                    self.opt.zero_grad()

                accelerator.wait_for_everyone()
############################logging#############################################
                if accelerator.is_main_process and self.step % 100 == 0:
                    scalar_dict = {"loss/diff": loss, "loss/grad": grad_norm}

                    summarize(
                        writer=writer,
                        global_step=self.step,
                        scalars=scalar_dict
                    )

                if accelerator.is_main_process:

                    if self.step % self.save_and_sample_every == 0:
                        data = data
                        data = {k: v.to(self.device) for k, v in data.items()}
                        with torch.no_grad():
                            latent = self.gpt(data['padded_mel_refer'], data['padded_text'],
                                torch.tensor([data['padded_text'].shape[-1]], device=device), data['padded_mel_code'],
                                torch.tensor([data['padded_mel_code'].shape[-1]*self.mel_length_compression], device=device),
                                return_latent=True, clip_inputs=False).transpose(1,2)
                        latent = F.interpolate(latent, size=data['padded_mel'].shape[-1], mode='nearest')
                        data_ =  dict(jpg=data['padded_mel'], txt=data['padded_mel_refer'], hint=latent)

                        with torch.no_grad():
                            model = accelerator.unwrap_model(self.model)
                            model.eval()
                            milestone = self.step // self.save_and_sample_every
                            log = model.log_images(data_)
                            mel = log['samples'].detach().cpu()
                            mel = denormalize_tacotron_mel(mel)
                            model.train()
                        gen = self.vocos.decode(mel)
                        torchaudio.save(str(self.logs_folder / f'sample-{milestone}.wav'), gen, 24000)
                        audio_dict = {}
                        audio_dict.update({
                                f"gen/audio": gen,
                            })
                        image_dict = {
                                f"gt/mel": plot_spectrogram_to_numpy(data['padded_mel'][0, :, :].detach().unsqueeze(-1).cpu()),
                                f"gen/mel": plot_spectrogram_to_numpy(mel[0, :, :].detach().unsqueeze(-1).cpu()),
                        }
                        summarize(
                            writer=writer_eval,
                            global_step=self.step,
                            audios=audio_dict,
                            images=image_dict,
                            audio_sampling_rate=24000
                        )
                        keep_ckpts = self.cfg['train']['keep_ckpts']
                        if keep_ckpts > 0:
                            clean_checkpoints(path_to_models=self.logs_folder, n_ckpts_to_keep=keep_ckpts, sort_by_time=True)
                        self.save(milestone)
                self.step += 1

                pbar.update(1)

        accelerator.print('training complete')
# example

if __name__ == '__main__':
    trainer = Trainer()
    # trainer.load('/home/hyc/tortoise_plus_zh/ttts/AA_diffusion/logs/2023-12-30-18-46-48/model-121.pt')
    trainer.train()