Spaces:
Build error
Build error
File size: 19,309 Bytes
4ee33aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 |
import random
import torch
import torch.nn.functional as F
import torchaudio
from utils.util import opt_get, load_model_from_config, pad_or_truncate
# Base class for all other injectors.
class Injector(torch.nn.Module):
def __init__(self, opt, env):
super(Injector, self).__init__()
self.opt = opt
self.env = env
if 'in' in opt.keys():
self.input = opt['in']
if 'out' in opt.keys():
self.output = opt['out']
# This should return a dict of new state variables.
def forward(self, state):
raise NotImplementedError
MEL_MIN = -11.512925148010254
TACOTRON_MEL_MAX = 2.3143386840820312
TORCH_MEL_MAX = 4.82 # FYI: this STILL isn't assertive enough...
def normalize_torch_mel(mel):
return 2 * ((mel - MEL_MIN) / (TORCH_MEL_MAX - MEL_MIN)) - 1
def denormalize_torch_mel(norm_mel):
return ((norm_mel+1)/2) * (TORCH_MEL_MAX - MEL_MIN) + MEL_MIN
def normalize_mel(mel):
return 2 * ((mel - MEL_MIN) / (TACOTRON_MEL_MAX - MEL_MIN)) - 1
def denormalize_mel(norm_mel):
return ((norm_mel+1)/2) * (TACOTRON_MEL_MAX - MEL_MIN) + MEL_MIN
class MelSpectrogramInjector(Injector):
def __init__(self, opt, env):
super().__init__(opt, env)
from stft import TacotronSTFT
# These are the default tacotron values for the MEL spectrogram.
filter_length = opt_get(opt, ['filter_length'], 1024)
hop_length = opt_get(opt, ['hop_length'], 256)
win_length = opt_get(opt, ['win_length'], 1024)
n_mel_channels = opt_get(opt, ['n_mel_channels'], 80)
mel_fmin = opt_get(opt, ['mel_fmin'], 0)
mel_fmax = opt_get(opt, ['mel_fmax'], 8000)
sampling_rate = opt_get(opt, ['sampling_rate'], 22050)
self.stft = TacotronSTFT(filter_length, hop_length, win_length, n_mel_channels, sampling_rate, mel_fmin, mel_fmax)
self.do_normalization = opt_get(opt, ['do_normalization'], None) # This is different from the TorchMelSpectrogramInjector. This just normalizes to the range [-1,1]
def forward(self, state):
inp = state[self.input]
if len(inp.shape) == 3: # Automatically squeeze out the channels dimension if it is present (assuming mono-audio)
inp = inp.squeeze(1)
assert len(inp.shape) == 2
self.stft = self.stft.to(inp.device)
mel = self.stft.mel_spectrogram(inp)
if self.do_normalization:
mel = normalize_mel(mel)
return {self.output: mel}
class TorchMelSpectrogramInjector(Injector):
def __init__(self, opt, env):
super().__init__(opt, env)
# These are the default tacotron values for the MEL spectrogram.
self.filter_length = opt_get(opt, ['filter_length'], 1024)
self.hop_length = opt_get(opt, ['hop_length'], 256)
self.win_length = opt_get(opt, ['win_length'], 1024)
self.n_mel_channels = opt_get(opt, ['n_mel_channels'], 80)
self.mel_fmin = opt_get(opt, ['mel_fmin'], 0)
self.mel_fmax = opt_get(opt, ['mel_fmax'], 8000)
self.sampling_rate = opt_get(opt, ['sampling_rate'], 22050)
norm = opt_get(opt, ['normalize'], False)
self.true_norm = opt_get(opt, ['true_normalization'], False)
self.mel_stft = torchaudio.transforms.MelSpectrogram(n_fft=self.filter_length, hop_length=self.hop_length,
win_length=self.win_length, power=2, normalized=norm,
sample_rate=self.sampling_rate, f_min=self.mel_fmin,
f_max=self.mel_fmax, n_mels=self.n_mel_channels,
norm="slaney")
self.mel_norm_file = opt_get(opt, ['mel_norm_file'], None)
if self.mel_norm_file is not None:
self.mel_norms = torch.load(self.mel_norm_file)
else:
self.mel_norms = None
def forward(self, state):
with torch.no_grad():
inp = state[self.input]
if len(inp.shape) == 3: # Automatically squeeze out the channels dimension if it is present (assuming mono-audio)
inp = inp.squeeze(1)
assert len(inp.shape) == 2
self.mel_stft = self.mel_stft.to(inp.device)
mel = self.mel_stft(inp)
# Perform dynamic range compression
mel = torch.log(torch.clamp(mel, min=1e-5))
if self.mel_norms is not None:
self.mel_norms = self.mel_norms.to(mel.device)
mel = mel / self.mel_norms.unsqueeze(0).unsqueeze(-1)
if self.true_norm:
mel = normalize_torch_mel(mel)
return {self.output: mel}
class RandomAudioCropInjector(Injector):
def __init__(self, opt, env):
super().__init__(opt, env)
if 'crop_size' in opt.keys():
self.min_crop_sz = opt['crop_size']
self.max_crop_sz = self.min_crop_sz
else:
self.min_crop_sz = opt['min_crop_size']
self.max_crop_sz = opt['max_crop_size']
self.lengths_key = opt['lengths_key']
self.crop_start_key = opt['crop_start_key']
self.min_buffer = opt_get(opt, ['min_buffer'], 0)
self.rand_buffer_ptr=9999
self.rand_buffer_sz=5000
def forward(self, state):
inp = state[self.input]
if torch.distributed.get_world_size() > 1:
# All processes should agree, otherwise all processes wait to process max_crop_sz (effectively). But agreeing too often
# is expensive, so agree on a "chunk" at a time.
if self.rand_buffer_ptr >= self.rand_buffer_sz:
self.rand_buffer = torch.randint(self.min_crop_sz, self.max_crop_sz, (self.rand_buffer_sz,), dtype=torch.long, device=inp.device)
torch.distributed.broadcast(self.rand_buffer, 0)
self.rand_buffer_ptr = 0
crop_sz = self.rand_buffer[self.rand_buffer_ptr]
self.rand_buffer_ptr += 1
else:
crop_sz = random.randint(self.min_crop_sz, self.max_crop_sz)
if self.lengths_key is not None:
lens = state[self.lengths_key]
len = torch.min(lens)
else:
len = inp.shape[-1]
margin = len - crop_sz - self.min_buffer * 2
if margin < 0:
start = self.min_buffer
else:
start = random.randint(0, margin) + self.min_buffer
res = {self.output: inp[:, :, start:start+crop_sz]}
if self.crop_start_key is not None:
res[self.crop_start_key] = start
return res
class AudioClipInjector(Injector):
def __init__(self, opt, env):
super().__init__(opt, env)
self.clip_size = opt['clip_size']
self.ctc_codes = opt['ctc_codes_key']
self.output_ctc = opt['ctc_out_key']
def forward(self, state):
inp = state[self.input]
ctc = state[self.ctc_codes]
len = inp.shape[-1]
if len > self.clip_size:
proportion_inp_remaining = self.clip_size/len
inp = inp[:, :, :self.clip_size]
ctc = ctc[:,:int(proportion_inp_remaining*ctc.shape[-1])]
return {self.output: inp, self.output_ctc: ctc}
class AudioResampleInjector(Injector):
def __init__(self, opt, env):
super().__init__(opt, env)
self.input_sr = opt['input_sample_rate']
self.output_sr = opt['output_sample_rate']
def forward(self, state):
inp = state[self.input]
return {self.output: torchaudio.functional.resample(inp, self.input_sr, self.output_sr)}
class DiscreteTokenInjector(Injector):
def __init__(self, opt, env):
super().__init__(opt, env)
cfg = opt_get(opt, ['dvae_config'], "../experiments/train_diffusion_vocoder_22k_level.yml")
dvae_name = opt_get(opt, ['dvae_name'], 'dvae')
self.dvae = load_model_from_config(cfg, dvae_name, device=f'cuda:{env["device"]}').eval()
def forward(self, state):
inp = state[self.input]
with torch.no_grad():
self.dvae = self.dvae.to(inp.device)
codes = self.dvae.get_codebook_indices(inp)
return {self.output: codes}
class GptVoiceLatentInjector(Injector):
"""
This injector does all the legwork to generate latents out of a UnifiedVoice model, including encoding all audio
inputs into a MEL spectrogram and discretizing the inputs.
"""
def __init__(self, opt, env):
super().__init__(opt, env)
# For discrete tokenization.
cfg = opt_get(opt, ['dvae_config'], "../experiments/train_diffusion_vocoder_22k_level.yml")
dvae_name = opt_get(opt, ['dvae_name'], 'dvae')
self.dvae = load_model_from_config(cfg, dvae_name).cuda().eval()
# The unified_voice model.
cfg = opt_get(opt, ['gpt_config'], "../experiments/train_gpt_tts_unified.yml")
model_name = opt_get(opt, ['gpt_name'], 'gpt')
pretrained_path = opt['gpt_path']
self.gpt = load_model_from_config(cfg, model_name=model_name,
also_load_savepoint=False, load_path=pretrained_path).cuda().eval()
self.needs_move = True
# Mel converter
self.mel_inj = TorchMelSpectrogramInjector({'in': 'wav', 'out': 'mel', 'mel_norm_file': '../experiments/clips_mel_norms.pth'},{})
# Aux input keys.
self.conditioning_key = opt['conditioning_clip']
self.text_input_key = opt['text']
self.text_lengths_key = opt['text_lengths']
self.input_lengths_key = opt['input_lengths']
def to_mel(self, t):
return self.mel_inj({'wav': t})['mel']
def forward(self, state):
with torch.no_grad():
mel_inputs = self.to_mel(state[self.input])
state_cond = pad_or_truncate(state[self.conditioning_key], 132300)
mel_conds = []
for k in range(state_cond.shape[1]):
mel_conds.append(self.to_mel(state_cond[:, k]))
mel_conds = torch.stack(mel_conds, dim=1)
if self.needs_move:
self.dvae = self.dvae.to(mel_inputs.device)
self.gpt = self.gpt.to(mel_inputs.device)
codes = self.dvae.get_codebook_indices(mel_inputs)
latents = self.gpt(mel_conds, state[self.text_input_key],
state[self.text_lengths_key], codes, state[self.input_lengths_key],
text_first=True, raw_mels=None, return_attentions=False, return_latent=True)
assert latents.shape[1] == codes.shape[1]
return {self.output: latents}
class ReverseUnivnetInjector(Injector):
"""
This injector specifically builds inputs and labels for a univnet detector.g
"""
def __init__(self, opt, env):
super().__init__(opt, env)
from scripts.audio.gen.speech_synthesis_utils import load_univnet_vocoder
self.univnet = load_univnet_vocoder().cuda()
self.mel_input_key = opt['mel']
self.label_output_key = opt['labels']
self.do_augmentations = opt_get(opt, ['do_aug'], True)
def forward(self, state):
with torch.no_grad():
original_audio = state[self.input]
mel = state[self.mel_input_key]
decoded_mel = self.univnet.inference(mel)[:,:,:original_audio.shape[-1]]
if self.do_augmentations:
original_audio = original_audio + torch.rand_like(original_audio) * random.random() * .005
decoded_mel = decoded_mel + torch.rand_like(decoded_mel) * random.random() * .005
if(random.random() < .5):
original_audio = torchaudio.functional.resample(torchaudio.functional.resample(original_audio, 24000, 10000), 10000, 24000)
if(random.random() < .5):
decoded_mel = torchaudio.functional.resample(torchaudio.functional.resample(decoded_mel, 24000, 10000), 10000, 24000)
if(random.random() < .5):
original_audio = torchaudio.functional.resample(original_audio, 24000, 22000 + random.randint(0,2000))
if(random.random() < .5):
decoded_mel = torchaudio.functional.resample(decoded_mel, 24000, 22000 + random.randint(0,2000))
smallest_dim = min(original_audio.shape[-1], decoded_mel.shape[-1])
original_audio = original_audio[:,:,:smallest_dim]
decoded_mel = decoded_mel[:,:,:smallest_dim]
labels = (torch.rand(mel.shape[0], 1, 1, device=mel.device) > .5)
output = torch.where(labels, original_audio, decoded_mel)
return {self.output: output, self.label_output_key: labels[:,0,0].long()}
class ConditioningLatentDistributionDivergenceInjector(Injector):
def __init__(self, opt, env):
super().__init__(opt, env)
if 'gpt_config' in opt.keys():
# The unified_voice model.
cfg = opt_get(opt, ['gpt_config'], "../experiments/train_gpt_tts_unified.yml")
model_name = opt_get(opt, ['gpt_name'], 'gpt')
pretrained_path = opt['gpt_path']
self.latent_producer = load_model_from_config(cfg, model_name=model_name,
also_load_savepoint=False, load_path=pretrained_path).eval()
self.mel_inj = TorchMelSpectrogramInjector({'in': 'wav', 'out': 'mel', 'mel_norm_file': '../experiments/clips_mel_norms.pth'},{})
else:
from models.audio.tts.unet_diffusion_tts_flat import DiffusionTtsFlat
self.latent_producer = DiffusionTtsFlat(model_channels=1024, num_layers=10, in_channels=100, out_channels=200,
in_latent_channels=1024, in_tokens=8193, dropout=0, use_fp16=False,
num_heads=16, layer_drop=0, unconditioned_percentage=0).eval()
self.latent_producer.load_state_dict(torch.load(opt['diffusion_path']))
self.mel_inj = TorchMelSpectrogramInjector({'in': 'wav', 'out': 'mel', 'mel_fmax': 12000, 'sampling_rate': 24000, 'n_mel_channels': 100},{})
self.needs_move = True
# Aux input keys.
self.conditioning_key = opt['conditioning_clip']
# Output keys
self.var_loss_key = opt['var_loss']
def to_mel(self, t):
return self.mel_inj({'wav': t})['mel']
def forward(self, state):
with torch.no_grad():
state_preds = state[self.input]
state_cond = pad_or_truncate(state[self.conditioning_key], 132300)
mel_conds = []
for k in range(state_cond.shape[1]):
mel_conds.append(self.to_mel(state_cond[:, k]))
mel_conds = torch.stack(mel_conds, dim=1)
if self.needs_move:
self.latent_producer = self.latent_producer.to(mel_conds.device)
latents = self.latent_producer.get_conditioning_latent(mel_conds)
sp_means, sp_vars = state_preds.mean(dim=0), state_preds.var(dim=0)
tr_means, tr_vars = latents.mean(dim=0), latents.var(dim=0)
mean_loss = F.mse_loss(sp_means, tr_means)
var_loss = F.mse_loss(sp_vars, tr_vars)
return {self.output: mean_loss, self.var_loss_key: var_loss}
class RandomScaleInjector(Injector):
def __init__(self, opt, env):
super().__init__(opt, env)
self.min_samples = opt['min_samples']
def forward(self, state):
inp = state[self.input]
if self.min_samples < inp.shape[-1]:
samples = random.randint(self.min_samples, inp.shape[-1])
start = random.randint(0, inp.shape[-1]-samples)
inp = inp[:, :, start:start+samples]
return {self.output: inp}
def pixel_shuffle_1d(x, upscale_factor):
batch_size, channels, steps = x.size()
channels //= upscale_factor
input_view = x.contiguous().view(batch_size, channels, upscale_factor, steps)
shuffle_out = input_view.permute(0, 1, 3, 2).contiguous()
return shuffle_out.view(batch_size, channels, steps * upscale_factor)
def pixel_unshuffle_1d(x, downscale):
b, c, s = x.size()
x = x.view(b, c, s//downscale, downscale)
x = x.permute(0,1,3,2).contiguous()
x = x.view(b, c*downscale, s//downscale)
return x
class AudioUnshuffleInjector(Injector):
def __init__(self, opt, env):
super().__init__(opt, env)
self.compression = opt['compression']
def forward(self, state):
inp = state[self.input]
return {self.output: pixel_unshuffle_1d(inp, self.compression)}
class ClvpTextInjector(Injector):
def __init__(self, opt, env):
super().__init__(opt, env)
from scripts.audio.gen.speech_synthesis_utils import load_clvp
self.clvp = load_clvp()
del self.clvp.speech_transformer # We will only be using the text transformer.
self.needs_move = True
def forward(self, state):
codes = state[self.input]
with torch.no_grad():
if self.needs_move:
self.clvp = self.clvp.to(codes.device)
latents = self.clvp.embed_text(codes)
return {self.output: latents}
class NormalizeMelInjector(Injector):
def __init__(self, opt, env):
super().__init__(opt, env)
def forward(self, state):
mel = state[self.input]
with torch.no_grad():
return {self.output: normalize_mel(mel)}
class ChannelClipInjector(Injector):
def __init__(self, opt, env):
super().__init__(opt, env)
self.lo = opt['channel_low']
self.hi = opt['channel_high']
def forward(self, state):
inp = state[self.input]
return {self.output: inp[:,self.lo:self.hi]}
class MusicCheaterLatentInjector(Injector):
def __init__(self, opt, env):
super().__init__(opt, env)
from models.audio.music.gpt_music2 import UpperEncoder
self.encoder = UpperEncoder(256, 1024, 256).eval()
self.encoder.load_state_dict(torch.load('../experiments/music_cheater_encoder_256.pth', map_location=torch.device('cpu')))
def forward(self, state):
with torch.no_grad():
mel = state[self.input]
self.encoder = self.encoder.to(mel.device)
proj = self.encoder(mel)
return {self.output: proj}
class KmeansQuantizerInjector(Injector):
def __init__(self, opt, env):
super().__init__(opt, env)
_, self.centroids = torch.load(opt['centroids'])
k, b = self.centroids.shape
self.centroids = self.centroids.permute(1,0)
def forward(self, state):
with torch.no_grad():
x = state[self.input]
self.centroids = self.centroids.to(x.device)
b, c, s = x.shape
x = x.permute(0,2,1).reshape(b*s, c)
distances = x.pow(2).sum(1,keepdim=True) - 2 * x @ self.centroids + self.centroids.pow(2).sum(0, keepdim=True)
distances[distances.isnan()] = 9999999999
distances = distances.reshape(b, s, self.centroids.shape[-1])
labels = distances.argmin(-1)
return {self.output: labels}
|