File size: 15,130 Bytes
4ee33aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
from ttts.diffusion.ldm.modules.diffusionmodules.util import (
    conv_nd,
    linear,
    normalization,
    zero_module,
    timestep_embedding,
)
from ttts.diffusion.ldm.modules.attention import SpatialTransformer
from ttts.diffusion.ldm.modules.diffusionmodules.openaimodel import TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock, Upsample, convert_module_to_f16, convert_module_to_f32
from ttts.diffusion.ldm.util import exists
import torch as th
from einops import rearrange, repeat
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import autocast
from ttts.diffusion.cldm.cond_emb import CLIP

from ttts.utils.utils import normalization, AttentionBlock

def count_parameters(model):
    return sum(p.numel() for p in model.parameters() if p.requires_grad)

class BaseModel(nn.Module):
    """
    The full UNet model with attention and timestep embedding.
    :param in_channels: channels in the input Tensor.
    :param model_channels: base channel count for the model.
    :param out_channels: channels in the output Tensor.
    :param num_res_blocks: number of residual blocks per downsample.
    :param attention_resolutions: a collection of downsample rates at which
        attention will take place. May be a set, list, or tuple.
        For example, if this contains 4, then at 4x downsampling, attention
        will be used.
    :param dropout: the dropout probability.
    :param channel_mult: channel multiplier for each level of the UNet.
    :param conv_resample: if True, use learned convolutions for upsampling and
        downsampling.
    :param dims: determines if the signal is 1D, 2D, or 3D.
    :param num_classes: if specified (as an int), then this model will be
        class-conditional with `num_classes` classes.
    :param use_checkpoint: use gradient checkpointing to reduce memory usage.
    :param num_heads: the number of attention heads in each attention layer.
    :param num_heads_channels: if specified, ignore num_heads and instead use
                               a fixed channel width per attention head.
    :param num_heads_upsample: works with num_heads to set a different number
                               of heads for upsampling. Deprecated.
    :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
    :param resblock_updown: use residual blocks for up/downsampling.
    :param use_new_attention_order: use a different attention pattern for potentially
                                    increased efficiency.
    """

    def __init__(
        self,
        in_channels,
        model_channels,
        out_channels,
        num_res_blocks,
        attention_resolutions,
        dropout=0,
        channel_mult=(1, 2, 4, 8),
        conv_resample=True,
        dims=1,
        num_classes=None,
        use_checkpoint=False,
        use_fp16=False,
        num_heads=-1,
        num_head_channels=-1,
        num_heads_upsample=-1,
        use_scale_shift_norm=False,
        resblock_updown=False,
        use_new_attention_order=False,
        use_spatial_transformer=False,    # custom transformer support
        transformer_depth=1,              # custom transformer support
        context_dim=None,                 # custom transformer support
        n_embed=None,                     # custom support for prediction of discrete ids into codebook of first stage vq model
        legacy=True,
        disable_self_attentions=None,
        num_attention_blocks=None,
        disable_middle_self_attn=False,
        use_linear_in_transformer=False,
    ):
        super().__init__()
        if use_spatial_transformer:
            assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'

        if context_dim is not None:
            assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
            from omegaconf.listconfig import ListConfig
            if type(context_dim) == ListConfig:
                context_dim = list(context_dim)

        if num_heads_upsample == -1:
            num_heads_upsample = num_heads

        if num_heads == -1:
            assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'

        if num_head_channels == -1:
            assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'

        self.in_channels = in_channels
        self.model_channels = model_channels
        self.out_channels = out_channels
        if isinstance(num_res_blocks, int):
            self.num_res_blocks = len(channel_mult) * [num_res_blocks]
        else:
            if len(num_res_blocks) != len(channel_mult):
                raise ValueError("provide num_res_blocks either as an int (globally constant) or "
                                 "as a list/tuple (per-level) with the same length as channel_mult")
            self.num_res_blocks = num_res_blocks
        if disable_self_attentions is not None:
            # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
            assert len(disable_self_attentions) == len(channel_mult)
        if num_attention_blocks is not None:
            assert len(num_attention_blocks) == len(self.num_res_blocks)
            assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
            print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
                  f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
                  f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
                  f"attention will still not be set.")

        self.attention_resolutions = attention_resolutions
        self.dropout = dropout
        self.channel_mult = channel_mult
        self.conv_resample = conv_resample
        self.num_classes = num_classes
        self.use_checkpoint = use_checkpoint
        self.dtype = th.float16 if use_fp16 else th.float32
        self.num_heads = num_heads
        self.num_head_channels = num_head_channels
        self.num_heads_upsample = num_heads_upsample
        self.predict_codebook_ids = n_embed is not None

        time_embed_dim = model_channels * 4
        self.time_embed = nn.Sequential(
            linear(model_channels, time_embed_dim),
            nn.SiLU(),
            linear(time_embed_dim, time_embed_dim),
        )

        if self.num_classes is not None:
            if isinstance(self.num_classes, int):
                self.label_emb = nn.Embedding(num_classes, time_embed_dim)
            elif self.num_classes == "continuous":
                print("setting up linear c_adm embedding layer")
                self.label_emb = nn.Linear(1, time_embed_dim)
            else:
                raise ValueError()

        self.blocks = nn.ModuleList(
            [
                TimestepEmbedSequential(
                    conv_nd(dims, in_channels, model_channels, 3, padding=1)
                )
            ]
        )
        self._feature_size = model_channels
        input_block_chans = [model_channels]
        ch = model_channels
        ds = 1
        for level, mult in enumerate(channel_mult):
            for nr in range(self.num_res_blocks[level]):
                layers = [
                    ResBlock(
                        ch,
                        time_embed_dim,
                        dropout,
                        out_channels=mult * model_channels,
                        dims=dims,
                        use_checkpoint=use_checkpoint,
                        use_scale_shift_norm=use_scale_shift_norm,
                    )
                ]
                ch = mult * model_channels
                if ds in attention_resolutions:
                    if num_head_channels == -1:
                        dim_head = ch // num_heads
                    else:
                        num_heads = ch // num_head_channels
                        dim_head = num_head_channels
                    if legacy:
                        #num_heads = 1
                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
                    if exists(disable_self_attentions):
                        disabled_sa = disable_self_attentions[level]
                    else:
                        disabled_sa = False

                    if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
                        layers.append(
                            AttentionBlock(
                                ch,
                                use_checkpoint=use_checkpoint,
                                num_heads=num_heads,
                                num_head_channels=dim_head,
                                use_new_attention_order=use_new_attention_order,
                            ) if not use_spatial_transformer else SpatialTransformer(
                                ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
                                disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
                                use_checkpoint=use_checkpoint
                            )
                        )
                self.blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch
                input_block_chans.append(ch)
            # if level != len(channel_mult) - 1:
            out_ch = ch
            self.blocks.append(
                TimestepEmbedSequential(
                    ResBlock(
                        ch,
                        time_embed_dim,
                        dropout,
                        out_channels=out_ch,
                        dims=dims,
                        use_checkpoint=use_checkpoint,
                        use_scale_shift_norm=use_scale_shift_norm,
                    )
                )
            )
            ch = out_ch
            input_block_chans.append(ch)
            # ds *= 2
            self._feature_size += ch

        self.out = nn.Sequential(
            normalization(ch),
            nn.SiLU(),
            zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
        )
        self.hint_converter = nn.Conv1d(1024,model_channels,3,padding=1)

    def convert_to_fp16(self):
        """
        Convert the torso of the model to float16.
        """
        self.blocks.apply(convert_module_to_f16)
        # self.input_blocks.apply(convert_module_to_f16)
        # self.middle_block.apply(convert_module_to_f16)
        # self.output_blocks.apply(convert_module_to_f16)

    def convert_to_fp32(self):
        """
        Convert the torso of the model to float32.
        """
        self.blocks.apply(convert_module_to_f32)
        # self.input_blocks.apply(convert_module_to_f32)
        # self.middle_block.apply(convert_module_to_f32)
        # self.output_blocks.apply(convert_module_to_f32)

    def forward(self, x, timesteps=None, context=None, hint=None, control=None,  **kwargs):
        hs = []
        t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
        emb = self.time_embed(t_emb)
        # guided_hint = self.input_hint_block(hint, emb, context)
        hint = self.hint_converter(hint)
        # context = self.context_proj(context).unsqueeze(-1)
        # scale, shift = torch.chunk(context, 2, dim = 1)
        # hint = hint*(1+scale)+shift
        h = x.type(self.dtype)
        flag=0
        for module in self.blocks:
            if flag==0:
                h = module(h, emb, context, control.pop(0))
                h += hint
                flag=1
            else:
                h = module(h, emb, context, control.pop(0))
            hs.append(h)
        h = h.type(x.dtype)
        return self.out(h)

class ReferenceNet(BaseModel):
    def forward(self, x, timesteps=None, context=None, **kwargs):
        hs = []
        control = []
        t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
        emb = self.time_embed(t_emb)
        h = x.type(self.dtype)
        for module in self.blocks:
            h,refer = module(h, emb, context,return_refer=True)
            hs.append(h)
            control.append(refer)
        h = h.type(x.dtype)
        # h = self.out(h)
        return control

TACOTRON_MEL_MAX = 5.5451774444795624753378569716654
TACOTRON_MEL_MIN = -16.118095650958319788125940182791
# TACOTRON_MEL_MIN = -11.512925464970228420089957273422

CVEC_MAX = 5.5451774444795624753378569716654
CVEC_MIN = -5.5451774444795624753378569716654
def denormalize_tacotron_mel(norm_mel):
    return norm_mel/0.18215
def normalize_tacotron_mel(mel):
    mel = torch.clamp(mel, min=-TACOTRON_MEL_MAX)
    return mel*0.18215

def denormalize_cvec(norm_mel):
    return norm_mel/0.11111
def normalize_cvec(mel):
    return mel*0.11111

class AA_diffusion(nn.Module):
    def __init__(self, config, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.refer_enc = CLIP(**config['clip'])
        self.refer_model = ReferenceNet(**config['refer_diffusion'])
        self.base_model = BaseModel(**config['base_diffusion'])
        print("base model params:", count_parameters(self.base_model))
        self.unconditioned_percentage = 0.1
        # self.control_model = instantiate_from_config(control_stage_config)
        # self.refer_model = instantiate_from_config(refer_config)
        self.control_scales = [1.0] * 13
        # self.unconditioned_embedding = nn.Parameter(torch.randn(1,100,1))
        self.unconditioned_cat_embedding = nn.Parameter(torch.randn(1,1024,1))
    def get_uncond_batch(self, code_emb):
        unconditioned_batches = torch.zeros((code_emb.shape[0], 1, 1), device=code_emb.device)
        # Mask out the conditioning branch for whole batch elements, implementing something similar to classifier-free guidance.
        if self.training and self.unconditioned_percentage > 0:
            unconditioned_batches = torch.rand((code_emb.shape[0], 1, 1),
                                               device=code_emb.device) < self.unconditioned_percentage
            code_emb = torch.where(unconditioned_batches, self.unconditioned_cat_embedding.repeat(code_emb.shape[0], 1, 1),
                                   code_emb)
        return code_emb
    def forward(self, x, t, hint, refer, conditioning_free=False):
        if conditioning_free:
            hint = self.unconditioned_cat_embedding.repeat(x.shape[0], 1, x.shape[-1])
        else:
            if self.training:
                hint = self.get_uncond_batch(hint)
            hint = F.interpolate(hint, size=x.shape[-1], mode='nearest')
        refer_cross = self.refer_enc(refer)
        refer_self = self.refer_model(refer, timesteps = t, context = refer_cross)
        eps = self.base_model(x, timesteps=t, context=refer_cross, hint=hint, control=refer_self)
        return eps