Spaces:
Sleeping
Sleeping
File size: 15,130 Bytes
4ee33aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
from ttts.diffusion.ldm.modules.diffusionmodules.util import (
conv_nd,
linear,
normalization,
zero_module,
timestep_embedding,
)
from ttts.diffusion.ldm.modules.attention import SpatialTransformer
from ttts.diffusion.ldm.modules.diffusionmodules.openaimodel import TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock, Upsample, convert_module_to_f16, convert_module_to_f32
from ttts.diffusion.ldm.util import exists
import torch as th
from einops import rearrange, repeat
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import autocast
from ttts.diffusion.cldm.cond_emb import CLIP
from ttts.utils.utils import normalization, AttentionBlock
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
class BaseModel(nn.Module):
"""
The full UNet model with attention and timestep embedding.
:param in_channels: channels in the input Tensor.
:param model_channels: base channel count for the model.
:param out_channels: channels in the output Tensor.
:param num_res_blocks: number of residual blocks per downsample.
:param attention_resolutions: a collection of downsample rates at which
attention will take place. May be a set, list, or tuple.
For example, if this contains 4, then at 4x downsampling, attention
will be used.
:param dropout: the dropout probability.
:param channel_mult: channel multiplier for each level of the UNet.
:param conv_resample: if True, use learned convolutions for upsampling and
downsampling.
:param dims: determines if the signal is 1D, 2D, or 3D.
:param num_classes: if specified (as an int), then this model will be
class-conditional with `num_classes` classes.
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
:param num_heads: the number of attention heads in each attention layer.
:param num_heads_channels: if specified, ignore num_heads and instead use
a fixed channel width per attention head.
:param num_heads_upsample: works with num_heads to set a different number
of heads for upsampling. Deprecated.
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
:param resblock_updown: use residual blocks for up/downsampling.
:param use_new_attention_order: use a different attention pattern for potentially
increased efficiency.
"""
def __init__(
self,
in_channels,
model_channels,
out_channels,
num_res_blocks,
attention_resolutions,
dropout=0,
channel_mult=(1, 2, 4, 8),
conv_resample=True,
dims=1,
num_classes=None,
use_checkpoint=False,
use_fp16=False,
num_heads=-1,
num_head_channels=-1,
num_heads_upsample=-1,
use_scale_shift_norm=False,
resblock_updown=False,
use_new_attention_order=False,
use_spatial_transformer=False, # custom transformer support
transformer_depth=1, # custom transformer support
context_dim=None, # custom transformer support
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
legacy=True,
disable_self_attentions=None,
num_attention_blocks=None,
disable_middle_self_attn=False,
use_linear_in_transformer=False,
):
super().__init__()
if use_spatial_transformer:
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
if context_dim is not None:
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
from omegaconf.listconfig import ListConfig
if type(context_dim) == ListConfig:
context_dim = list(context_dim)
if num_heads_upsample == -1:
num_heads_upsample = num_heads
if num_heads == -1:
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
if num_head_channels == -1:
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
self.in_channels = in_channels
self.model_channels = model_channels
self.out_channels = out_channels
if isinstance(num_res_blocks, int):
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
else:
if len(num_res_blocks) != len(channel_mult):
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
"as a list/tuple (per-level) with the same length as channel_mult")
self.num_res_blocks = num_res_blocks
if disable_self_attentions is not None:
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
assert len(disable_self_attentions) == len(channel_mult)
if num_attention_blocks is not None:
assert len(num_attention_blocks) == len(self.num_res_blocks)
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
f"attention will still not be set.")
self.attention_resolutions = attention_resolutions
self.dropout = dropout
self.channel_mult = channel_mult
self.conv_resample = conv_resample
self.num_classes = num_classes
self.use_checkpoint = use_checkpoint
self.dtype = th.float16 if use_fp16 else th.float32
self.num_heads = num_heads
self.num_head_channels = num_head_channels
self.num_heads_upsample = num_heads_upsample
self.predict_codebook_ids = n_embed is not None
time_embed_dim = model_channels * 4
self.time_embed = nn.Sequential(
linear(model_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
if self.num_classes is not None:
if isinstance(self.num_classes, int):
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
elif self.num_classes == "continuous":
print("setting up linear c_adm embedding layer")
self.label_emb = nn.Linear(1, time_embed_dim)
else:
raise ValueError()
self.blocks = nn.ModuleList(
[
TimestepEmbedSequential(
conv_nd(dims, in_channels, model_channels, 3, padding=1)
)
]
)
self._feature_size = model_channels
input_block_chans = [model_channels]
ch = model_channels
ds = 1
for level, mult in enumerate(channel_mult):
for nr in range(self.num_res_blocks[level]):
layers = [
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=mult * model_channels,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
)
]
ch = mult * model_channels
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
#num_heads = 1
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
if exists(disable_self_attentions):
disabled_sa = disable_self_attentions[level]
else:
disabled_sa = False
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
layers.append(
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else SpatialTransformer(
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint
)
)
self.blocks.append(TimestepEmbedSequential(*layers))
self._feature_size += ch
input_block_chans.append(ch)
# if level != len(channel_mult) - 1:
out_ch = ch
self.blocks.append(
TimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=out_ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
)
)
)
ch = out_ch
input_block_chans.append(ch)
# ds *= 2
self._feature_size += ch
self.out = nn.Sequential(
normalization(ch),
nn.SiLU(),
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
)
self.hint_converter = nn.Conv1d(1024,model_channels,3,padding=1)
def convert_to_fp16(self):
"""
Convert the torso of the model to float16.
"""
self.blocks.apply(convert_module_to_f16)
# self.input_blocks.apply(convert_module_to_f16)
# self.middle_block.apply(convert_module_to_f16)
# self.output_blocks.apply(convert_module_to_f16)
def convert_to_fp32(self):
"""
Convert the torso of the model to float32.
"""
self.blocks.apply(convert_module_to_f32)
# self.input_blocks.apply(convert_module_to_f32)
# self.middle_block.apply(convert_module_to_f32)
# self.output_blocks.apply(convert_module_to_f32)
def forward(self, x, timesteps=None, context=None, hint=None, control=None, **kwargs):
hs = []
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
emb = self.time_embed(t_emb)
# guided_hint = self.input_hint_block(hint, emb, context)
hint = self.hint_converter(hint)
# context = self.context_proj(context).unsqueeze(-1)
# scale, shift = torch.chunk(context, 2, dim = 1)
# hint = hint*(1+scale)+shift
h = x.type(self.dtype)
flag=0
for module in self.blocks:
if flag==0:
h = module(h, emb, context, control.pop(0))
h += hint
flag=1
else:
h = module(h, emb, context, control.pop(0))
hs.append(h)
h = h.type(x.dtype)
return self.out(h)
class ReferenceNet(BaseModel):
def forward(self, x, timesteps=None, context=None, **kwargs):
hs = []
control = []
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
emb = self.time_embed(t_emb)
h = x.type(self.dtype)
for module in self.blocks:
h,refer = module(h, emb, context,return_refer=True)
hs.append(h)
control.append(refer)
h = h.type(x.dtype)
# h = self.out(h)
return control
TACOTRON_MEL_MAX = 5.5451774444795624753378569716654
TACOTRON_MEL_MIN = -16.118095650958319788125940182791
# TACOTRON_MEL_MIN = -11.512925464970228420089957273422
CVEC_MAX = 5.5451774444795624753378569716654
CVEC_MIN = -5.5451774444795624753378569716654
def denormalize_tacotron_mel(norm_mel):
return norm_mel/0.18215
def normalize_tacotron_mel(mel):
mel = torch.clamp(mel, min=-TACOTRON_MEL_MAX)
return mel*0.18215
def denormalize_cvec(norm_mel):
return norm_mel/0.11111
def normalize_cvec(mel):
return mel*0.11111
class AA_diffusion(nn.Module):
def __init__(self, config, *args, **kwargs):
super().__init__(*args, **kwargs)
self.refer_enc = CLIP(**config['clip'])
self.refer_model = ReferenceNet(**config['refer_diffusion'])
self.base_model = BaseModel(**config['base_diffusion'])
print("base model params:", count_parameters(self.base_model))
self.unconditioned_percentage = 0.1
# self.control_model = instantiate_from_config(control_stage_config)
# self.refer_model = instantiate_from_config(refer_config)
self.control_scales = [1.0] * 13
# self.unconditioned_embedding = nn.Parameter(torch.randn(1,100,1))
self.unconditioned_cat_embedding = nn.Parameter(torch.randn(1,1024,1))
def get_uncond_batch(self, code_emb):
unconditioned_batches = torch.zeros((code_emb.shape[0], 1, 1), device=code_emb.device)
# Mask out the conditioning branch for whole batch elements, implementing something similar to classifier-free guidance.
if self.training and self.unconditioned_percentage > 0:
unconditioned_batches = torch.rand((code_emb.shape[0], 1, 1),
device=code_emb.device) < self.unconditioned_percentage
code_emb = torch.where(unconditioned_batches, self.unconditioned_cat_embedding.repeat(code_emb.shape[0], 1, 1),
code_emb)
return code_emb
def forward(self, x, t, hint, refer, conditioning_free=False):
if conditioning_free:
hint = self.unconditioned_cat_embedding.repeat(x.shape[0], 1, x.shape[-1])
else:
if self.training:
hint = self.get_uncond_batch(hint)
hint = F.interpolate(hint, size=x.shape[-1], mode='nearest')
refer_cross = self.refer_enc(refer)
refer_self = self.refer_model(refer, timesteps = t, context = refer_cross)
eps = self.base_model(x, timesteps=t, context=refer_cross, hint=hint, control=refer_self)
return eps
|