File size: 4,168 Bytes
ae81afb
49fb505
ae81afb
49fb505
ae81afb
49fb505
fd4bbc5
ae81afb
49fb505
ae81afb
49fb505
ae81afb
49fb505
 
 
 
 
 
 
 
 
 
ae81afb
49fb505
ae81afb
49fb505
e1be1d0
ae81afb
e1be1d0
 
 
 
 
 
49fb505
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae81afb
49fb505
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66e46f9
fd4bbc5
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
print("import gradio")
import gradio as gr
print("import ppn")
from pypinyin import lazy_pinyin, Style
print("import torch")
import torch
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print("import ttts")
from ttts.utils.infer_utils import load_model
print("import mel")
from ttts.vocoder.feature_extractors import MelSpectrogramFeatures
print("import torchaudio")
import torchaudio
MODELS = {
    'vqvae.pth':'./TTTS/vae-30.pt',
    'gpt.pth': './TTTS/gpt-70.pt',
    'clvp2.pth': '',
    'diffusion.pth': './TTTS/diffusion-855.pt',
    'vocoder.pth': './ttts/pretrained_models/pytorch_model.bin',
    'rlg_auto.pth': '',
    'rlg_diffuser.pth': '',
}
print("import tokenizer")
from ttts.gpt.voice_tokenizer import VoiceBpeTokenizer
print("import f")
import torch.nn.functional as F
cond_audio = 'ttts/3.wav'
print("load audio")
audio,sr = torchaudio.load(cond_audio)
if audio.shape[0]>1:
    audio = audio[0].unsqueeze(0)
audio = torchaudio.transforms.Resample(sr, 24000)(audio)
cond_mel = MelSpectrogramFeatures()(audio).to(device)
print(cond_mel.shape)
auto_conditioning = cond_mel
settings = {'temperature': .8, 'length_penalty': 1.0, 'repetition_penalty': 2.0,
                    'top_p': .8,
                    'cond_free_k': 2.0, 'diffusion_temperature': 1.0}
top_p = .8
temperature = .8
autoregressive_batch_size = 1
length_penalty = 1.0
repetition_penalty = 2.0
max_mel_tokens = 600
from vocos import Vocos
from ttts.diffusion.train import do_spectrogram_diffusion
from ttts.utils.diffusion import SpacedDiffusion, space_timesteps, get_named_beta_schedule
from ttts.diffusion.aa_model import denormalize_tacotron_mel, normalize_tacotron_mel
# print(device)

vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")


def speak(text):
    pinyin = ' '.join(lazy_pinyin(text, style=Style.TONE3, neutral_tone_with_five=True))
    tokenizer = VoiceBpeTokenizer('ttts/gpt/gpt_tts_tokenizer.json')
    text_tokens = torch.IntTensor(tokenizer.encode(pinyin)).unsqueeze(0).to(device)
    text_tokens = F.pad(text_tokens, (0, 1))  # This may not be necessary.
    text_tokens = text_tokens.to(device)
    print(pinyin)
    print(text_tokens)
    gpt = load_model('gpt',MODELS['gpt.pth'], './ttts/gpt/config.json',device)
    gpt.post_init_gpt2_config(use_deepspeed=False, kv_cache=False, half=False)
    codes = gpt.inference_speech(auto_conditioning, text_tokens,
                                do_sample=True,
                                top_p=top_p,
                                temperature=temperature,
                                num_return_sequences=autoregressive_batch_size,
                                length_penalty=length_penalty,
                                repetition_penalty=repetition_penalty,
                                max_generate_length=max_mel_tokens)
    latent = gpt(auto_conditioning, text_tokens,
    torch.tensor([text_tokens.shape[-1]], device=text_tokens.device), codes,
    torch.tensor([codes.shape[-1]*gpt.mel_length_compression], device=text_tokens.device),
    return_latent=True, clip_inputs=False).transpose(1,2)
    diffusion = load_model('diffusion',MODELS['diffusion.pth'],'./ttts/diffusion/config.yaml',device)
    diffuser = SpacedDiffusion(use_timesteps=space_timesteps(1000, [50]), model_mean_type='epsilon',
                           model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', 1000),
                           conditioning_free=True, conditioning_free_k=2., sampler='dpm++2m')
    diffusion_conditioning = normalize_tacotron_mel(cond_mel)
    mel = do_spectrogram_diffusion(diffusion, diffuser, latent, diffusion_conditioning, temperature=1.0).detach().cpu()
    wav = vocos.decode(mel)
    return (24000, wav.detach().cpu())

with gr.Blocks() as demo:
    gr.Markdown('# TTTS\n\nAn **unofficial** demo of [TTTS](https://github.com/adelacvg/ttts) based on XTTS. TTTS only supports Chinese.')
    txt = gr.Textbox(label="Text to say", interactive=True, value="大家好,今天来点大家想看的东西。")
    btn = gr.Button("Say")
    aud = gr.Audio(interactive=False)
    btn.click(speak, inputs=txt, outputs=aud)
    
demo.launch()