File size: 14,005 Bytes
4ee33aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
from omegaconf import OmegaConf
import torchaudio
from ttts.diffusion.aa_model import AA_diffusion, denormalize_tacotron_mel, normalize_tacotron_mel
from ttts.gpt.voice_tokenizer import VoiceBpeTokenizer
from ttts.utils.diffusion import SpacedDiffusion, space_timesteps, get_named_beta_schedule
import torch
import copy
from datetime import datetime
import json
from vocos import Vocos
from pathlib import Path
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from ttts.utils.infer_utils import load_model
from ttts.utils.utils import EMA, clean_checkpoints, plot_spectrogram_to_numpy, summarize, update_moving_average
from ttts.diffusion.dataset import DiffusionDataset, DiffusionCollater
from ttts.diffusion.model import DiffusionTts
import torch
import os
from torch.utils.data import DataLoader
from torch import nn
from torch.optim import AdamW
from accelerate import Accelerator
import functools
import random

import torch
from torch.cuda.amp import autocast

from ttts.utils.diffusion import get_named_beta_schedule
from ttts.utils.resample import create_named_schedule_sampler, LossAwareSampler, DeterministicSampler, LossSecondMomentResampler
from ttts.utils.diffusion import space_timesteps, SpacedDiffusion
# from ttts.diffusion.diffusion_util import Diffuser
# from accelerate import DistributedDataParallelKwargs

def do_spectrogram_diffusion(diffusion_model, diffuser, latents, conditioning_latents, temperature=1, verbose=True):
    """
    Uses the specified diffusion model to convert discrete codes into a spectrogram.
    """
    with torch.no_grad():
        output_seq_len = latents.shape[2] * 4 # This diffusion model converts from 22kHz spectrogram codes to a 24kHz spectrogram signal.
        output_shape = (latents.shape[0], 100, output_seq_len)

        noise = torch.randn(output_shape, device=latents.device) * temperature
        mel = diffuser.p_sample_loop(diffusion_model, output_shape, noise=noise,
                                    model_kwargs= {
                                    "hint": latents,
                                    "refer": conditioning_latents
                                    },
                                    progress=verbose)
        return denormalize_tacotron_mel(mel)[:,:,:output_seq_len]

def set_requires_grad(model, val):
    for p in model.parameters():
        p.requires_grad = val
def get_grad_norm(model):
    total_norm = 0
    for name,p in model.named_parameters():
        try:
            param_norm = p.grad.data.norm(2)
            total_norm += param_norm.item() ** 2
        except:
            print(name)
            pass
    total_norm = total_norm ** (1. / 2) 
    return total_norm
def cycle(dl):
    while True:
        for data in dl:
            yield data
def warmup(step):
    if step<1000:
        return float(step/1000)
    else:
        return 1
def count_parameters(model):
    return sum(p.numel() for p in model.parameters() if p.requires_grad)
class Trainer(object):
    def __init__(self, cfg_path='ttts/diffusion/config.yaml'):
        # ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
        # self.accelerator = Accelerator(kwargs_handlers=[ddp_kwargs])
        self.accelerator = Accelerator()
        self.cfg = OmegaConf.load(cfg_path)
        # self.cfg = json.load(open(cfg_path))
        trained_diffusion_steps = 1000
        self.trained_diffusion_steps = 1000
        desired_diffusion_steps = 1000
        self.desired_diffusion_steps = 1000
        cond_free_k = 2.

        self.gpt = load_model('gpt',self.cfg['dataset']['gpt_path'],'ttts/gpt/config.json','cuda')
        self.mel_length_compression  = self.gpt.mel_length_compression

        self.diffuser= SpacedDiffusion(use_timesteps=space_timesteps(trained_diffusion_steps, [desired_diffusion_steps]), model_mean_type='epsilon',
                           model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', trained_diffusion_steps),
                           conditioning_free=False, conditioning_free_k=cond_free_k)
        self.infer_diffuser = SpacedDiffusion(use_timesteps=space_timesteps(trained_diffusion_steps, [50]), model_mean_type='epsilon',
                           model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', trained_diffusion_steps),
                           conditioning_free=True, conditioning_free_k=cond_free_k, sampler='dpm++2m')
        # self.diffusion = DiffusionTts(**self.cfg['diffusion'])
        self.diffusion = AA_diffusion(self.cfg)
        print("model params:", count_parameters(self.diffusion))
        self.dataset = DiffusionDataset(self.cfg)
        self.dataloader = DataLoader(self.dataset, **self.cfg['dataloader'], collate_fn=DiffusionCollater())
        self.vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
        self.train_steps = self.cfg['train']['train_steps']
        self.val_freq = self.cfg['train']['val_freq']
        if self.accelerator.is_main_process:
            self.eval_dataloader = DataLoader(self.dataset, batch_size = 1, shuffle= False, num_workers = 16, pin_memory=True, collate_fn=DiffusionCollater())
            self.eval_dataloader = cycle(self.eval_dataloader)
            self.ema_model = self._get_target_encoder(self.diffusion).to(self.accelerator.device)
            now = datetime.now()
            self.logs_folder = Path(self.cfg['train']['logs_folder']+'/'+now.strftime("%Y-%m-%d-%H-%M-%S"))
            self.logs_folder.mkdir(exist_ok = True, parents=True)
        self.ema_updater = EMA(0.999)
        self.optimizer = AdamW(self.diffusion.parameters(),lr=self.cfg['train']['lr'], betas=(0.9, 0.999), weight_decay=0.01)
        self.scheduler = torch.optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=warmup)
        self.diffusion, self.dataloader, self.optimizer, self.scheduler, self.gpt = self.accelerator.prepare(self.diffusion, self.dataloader, self.optimizer, self.scheduler, self.gpt)
        self.dataloader = cycle(self.dataloader)
        self.step=0
        self.gradient_accumulate_every=self.cfg['train']['accumulate_num']
        self.unconditioned_percentage = self.cfg['train']['unconditioned_percentage']
    def _get_target_encoder(self, model):
        target_encoder = copy.deepcopy(model)
        set_requires_grad(target_encoder, False)
        for p in target_encoder.parameters():
            p.DO_NOT_TRAIN = True
        return target_encoder
    def save(self, milestone):
        if not self.accelerator.is_local_main_process:
            return
        data = {
            'step': self.step,
            'model': self.accelerator.get_state_dict(self.diffusion),
        }
        torch.save(data, str(self.logs_folder / f'model-{milestone}.pt'))

    def load(self, model_path):
        accelerator = self.accelerator
        device = accelerator.device
        data = torch.load(model_path, map_location=device)
        state_dict = data['model']
        self.step = data['step']
        model = self.accelerator.unwrap_model(self.diffusion)
        model.load_state_dict(state_dict)
    def train(self):
        accelerator = self.accelerator
        device = accelerator.device
        if accelerator.is_main_process:
            writer = SummaryWriter(log_dir=self.logs_folder)
            writer_eval = SummaryWriter(log_dir=os.path.join(self.logs_folder, 'eval'))
        with tqdm(initial = self.step, total = self.train_steps, disable = not accelerator.is_main_process) as pbar:
            while self.step < self.train_steps:
                total_loss = 0.
                # with torch.autograd.detect_anomaly():
                for _ in range(self.gradient_accumulate_every):
                    data = next(self.dataloader)
                    if data==None:
                        continue
                        
                    with torch.no_grad():
                        latent = self.gpt(data['padded_mel_refer'], data['padded_text'],
                            torch.tensor([data['padded_text'].shape[-1]], device=device), data['padded_mel_code'],
                            torch.tensor([data['padded_mel_code'].shape[-1]*self.mel_length_compression], device=device),
                            return_latent=True, clip_inputs=False).transpose(1,2)

                    # mel_recon_padded, mel_padded, mel_lengths, refer_padded, refer_lengths
                    x_start = normalize_tacotron_mel(data['padded_mel'].to(device))
                    aligned_conditioning = latent 
                    conditioning_latent = normalize_tacotron_mel(data['padded_mel_refer'].to(device))
                    t = torch.randint(0, self.desired_diffusion_steps, (x_start.shape[0],), device=device).long().to(device)
                    with self.accelerator.autocast():
                        loss = self.diffuser.training_losses( 
                            model = self.diffusion, 
                            x_start = x_start,
                            t = t,
                            model_kwargs = {
                                "hint": aligned_conditioning,
                                "refer": conditioning_latent
                            },
                            )["loss"].mean()
                        unused_params =[]
                        model = self.accelerator.unwrap_model(self.diffusion)
                        unused_params.extend(list(model.refer_model.blocks.parameters()))
                        unused_params.extend(list(model.refer_model.out.parameters()))
                        unused_params.extend(list(model.refer_model.hint_converter.parameters()))
                        unused_params.extend(list(model.refer_enc.visual.proj))
                        extraneous_addition = 0
                        for p in unused_params:
                            extraneous_addition = extraneous_addition + p.mean()
                        loss = loss + 0*extraneous_addition
                        loss = loss / self.gradient_accumulate_every
                        total_loss += loss.item()

                    self.accelerator.backward(loss)
                grad_norm = get_grad_norm(self.diffusion)
                accelerator.clip_grad_norm_(self.diffusion.parameters(), 1.0)
                pbar.set_description(f'loss: {total_loss:.4f}')
                accelerator.wait_for_everyone()
                self.optimizer.step()
                self.optimizer.zero_grad()
                self.scheduler.step()
                accelerator.wait_for_everyone()
                # if accelerator.is_main_process:
                #     update_moving_average(self.ema_updater,self.ema_model,self.diffusion)
                if accelerator.is_main_process and self.step % self.val_freq == 0:
                    scalar_dict = {"loss": total_loss, "loss/grad": grad_norm, "lr":self.scheduler.get_last_lr()[0]}
                    summarize(
                        writer=writer,
                        global_step=self.step,
                        scalars=scalar_dict
                    )
                if accelerator.is_main_process and self.step % self.cfg['train']['save_freq'] == 0:
                    self.ema_model.eval()
                    data = next(self.eval_dataloader)
                    text_padded, mel_code_padded, mel_padded, mel_lengths,\
                    refer_padded, refer_lengths = data['padded_text'].to(device), data['padded_mel_code'].to(device), data['padded_mel'], data['mel_lengths'], data['padded_mel_refer'].to(device), data['mel_refer_lengths']

                    text_padded, mel_code_padded, refer_padded = text_padded.to(device), mel_code_padded.to(device), refer_padded.to(device)
                    with torch.no_grad():
                        latent = self.gpt(refer_padded, text_padded,
                            torch.tensor([text_padded.shape[-1]], device=device), mel_code_padded,
                            torch.tensor([mel_code_padded.shape[-1]*self.mel_length_compression], device=device),
                            return_latent=True, clip_inputs=False).transpose(1,2)
                    refer_padded = normalize_tacotron_mel(refer_padded)
                    with torch.no_grad():
                        diffusion = self.accelerator.unwrap_model(self.diffusion)
                        mel = do_spectrogram_diffusion(diffusion, self.infer_diffuser,latent,refer_padded,temperature=0.8)
                        mel = mel.detach().cpu()
                    
                    milestone = self.step // self.cfg['train']['save_freq'] 
                    gen = self.vocos.decode(mel)
                    torchaudio.save(str(self.logs_folder / f'sample-{milestone}.wav'), gen, 24000)
                    audio_dict = {}
                    audio_dict.update({
                            f"gen/audio": gen,
                        })
                    image_dict = {
                        f"gt/mel": plot_spectrogram_to_numpy(mel_padded[0, :, :].detach().unsqueeze(-1).cpu()),
                        f"gen/mel": plot_spectrogram_to_numpy(mel[0, :, :].detach().unsqueeze(-1).cpu()),
                    }
                    summarize(
                        writer=writer_eval,
                        audios=audio_dict,
                        global_step=self.step,
                        images=image_dict,
                    )

                    keep_ckpts = self.cfg['train']['keep_ckpts']
                    if keep_ckpts > 0:
                        clean_checkpoints(path_to_models=self.logs_folder, n_ckpts_to_keep=keep_ckpts, sort_by_time=True)
                    self.save(self.step//1000)
                    self.ema_model.train()
                self.step += 1
                pbar.update(1)
        accelerator.print('training complete')


if __name__ == '__main__':
    trainer = Trainer()
    trainer.load('/home/hyc/tortoise_plus_zh/ttts/diffusion/logs/2024-01-09-17-44-36/model-855.pt')
    trainer.train()