Spaces:
Sleeping
Sleeping
File size: 14,005 Bytes
4ee33aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
from omegaconf import OmegaConf
import torchaudio
from ttts.diffusion.aa_model import AA_diffusion, denormalize_tacotron_mel, normalize_tacotron_mel
from ttts.gpt.voice_tokenizer import VoiceBpeTokenizer
from ttts.utils.diffusion import SpacedDiffusion, space_timesteps, get_named_beta_schedule
import torch
import copy
from datetime import datetime
import json
from vocos import Vocos
from pathlib import Path
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from ttts.utils.infer_utils import load_model
from ttts.utils.utils import EMA, clean_checkpoints, plot_spectrogram_to_numpy, summarize, update_moving_average
from ttts.diffusion.dataset import DiffusionDataset, DiffusionCollater
from ttts.diffusion.model import DiffusionTts
import torch
import os
from torch.utils.data import DataLoader
from torch import nn
from torch.optim import AdamW
from accelerate import Accelerator
import functools
import random
import torch
from torch.cuda.amp import autocast
from ttts.utils.diffusion import get_named_beta_schedule
from ttts.utils.resample import create_named_schedule_sampler, LossAwareSampler, DeterministicSampler, LossSecondMomentResampler
from ttts.utils.diffusion import space_timesteps, SpacedDiffusion
# from ttts.diffusion.diffusion_util import Diffuser
# from accelerate import DistributedDataParallelKwargs
def do_spectrogram_diffusion(diffusion_model, diffuser, latents, conditioning_latents, temperature=1, verbose=True):
"""
Uses the specified diffusion model to convert discrete codes into a spectrogram.
"""
with torch.no_grad():
output_seq_len = latents.shape[2] * 4 # This diffusion model converts from 22kHz spectrogram codes to a 24kHz spectrogram signal.
output_shape = (latents.shape[0], 100, output_seq_len)
noise = torch.randn(output_shape, device=latents.device) * temperature
mel = diffuser.p_sample_loop(diffusion_model, output_shape, noise=noise,
model_kwargs= {
"hint": latents,
"refer": conditioning_latents
},
progress=verbose)
return denormalize_tacotron_mel(mel)[:,:,:output_seq_len]
def set_requires_grad(model, val):
for p in model.parameters():
p.requires_grad = val
def get_grad_norm(model):
total_norm = 0
for name,p in model.named_parameters():
try:
param_norm = p.grad.data.norm(2)
total_norm += param_norm.item() ** 2
except:
print(name)
pass
total_norm = total_norm ** (1. / 2)
return total_norm
def cycle(dl):
while True:
for data in dl:
yield data
def warmup(step):
if step<1000:
return float(step/1000)
else:
return 1
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
class Trainer(object):
def __init__(self, cfg_path='ttts/diffusion/config.yaml'):
# ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
# self.accelerator = Accelerator(kwargs_handlers=[ddp_kwargs])
self.accelerator = Accelerator()
self.cfg = OmegaConf.load(cfg_path)
# self.cfg = json.load(open(cfg_path))
trained_diffusion_steps = 1000
self.trained_diffusion_steps = 1000
desired_diffusion_steps = 1000
self.desired_diffusion_steps = 1000
cond_free_k = 2.
self.gpt = load_model('gpt',self.cfg['dataset']['gpt_path'],'ttts/gpt/config.json','cuda')
self.mel_length_compression = self.gpt.mel_length_compression
self.diffuser= SpacedDiffusion(use_timesteps=space_timesteps(trained_diffusion_steps, [desired_diffusion_steps]), model_mean_type='epsilon',
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', trained_diffusion_steps),
conditioning_free=False, conditioning_free_k=cond_free_k)
self.infer_diffuser = SpacedDiffusion(use_timesteps=space_timesteps(trained_diffusion_steps, [50]), model_mean_type='epsilon',
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', trained_diffusion_steps),
conditioning_free=True, conditioning_free_k=cond_free_k, sampler='dpm++2m')
# self.diffusion = DiffusionTts(**self.cfg['diffusion'])
self.diffusion = AA_diffusion(self.cfg)
print("model params:", count_parameters(self.diffusion))
self.dataset = DiffusionDataset(self.cfg)
self.dataloader = DataLoader(self.dataset, **self.cfg['dataloader'], collate_fn=DiffusionCollater())
self.vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
self.train_steps = self.cfg['train']['train_steps']
self.val_freq = self.cfg['train']['val_freq']
if self.accelerator.is_main_process:
self.eval_dataloader = DataLoader(self.dataset, batch_size = 1, shuffle= False, num_workers = 16, pin_memory=True, collate_fn=DiffusionCollater())
self.eval_dataloader = cycle(self.eval_dataloader)
self.ema_model = self._get_target_encoder(self.diffusion).to(self.accelerator.device)
now = datetime.now()
self.logs_folder = Path(self.cfg['train']['logs_folder']+'/'+now.strftime("%Y-%m-%d-%H-%M-%S"))
self.logs_folder.mkdir(exist_ok = True, parents=True)
self.ema_updater = EMA(0.999)
self.optimizer = AdamW(self.diffusion.parameters(),lr=self.cfg['train']['lr'], betas=(0.9, 0.999), weight_decay=0.01)
self.scheduler = torch.optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=warmup)
self.diffusion, self.dataloader, self.optimizer, self.scheduler, self.gpt = self.accelerator.prepare(self.diffusion, self.dataloader, self.optimizer, self.scheduler, self.gpt)
self.dataloader = cycle(self.dataloader)
self.step=0
self.gradient_accumulate_every=self.cfg['train']['accumulate_num']
self.unconditioned_percentage = self.cfg['train']['unconditioned_percentage']
def _get_target_encoder(self, model):
target_encoder = copy.deepcopy(model)
set_requires_grad(target_encoder, False)
for p in target_encoder.parameters():
p.DO_NOT_TRAIN = True
return target_encoder
def save(self, milestone):
if not self.accelerator.is_local_main_process:
return
data = {
'step': self.step,
'model': self.accelerator.get_state_dict(self.diffusion),
}
torch.save(data, str(self.logs_folder / f'model-{milestone}.pt'))
def load(self, model_path):
accelerator = self.accelerator
device = accelerator.device
data = torch.load(model_path, map_location=device)
state_dict = data['model']
self.step = data['step']
model = self.accelerator.unwrap_model(self.diffusion)
model.load_state_dict(state_dict)
def train(self):
accelerator = self.accelerator
device = accelerator.device
if accelerator.is_main_process:
writer = SummaryWriter(log_dir=self.logs_folder)
writer_eval = SummaryWriter(log_dir=os.path.join(self.logs_folder, 'eval'))
with tqdm(initial = self.step, total = self.train_steps, disable = not accelerator.is_main_process) as pbar:
while self.step < self.train_steps:
total_loss = 0.
# with torch.autograd.detect_anomaly():
for _ in range(self.gradient_accumulate_every):
data = next(self.dataloader)
if data==None:
continue
with torch.no_grad():
latent = self.gpt(data['padded_mel_refer'], data['padded_text'],
torch.tensor([data['padded_text'].shape[-1]], device=device), data['padded_mel_code'],
torch.tensor([data['padded_mel_code'].shape[-1]*self.mel_length_compression], device=device),
return_latent=True, clip_inputs=False).transpose(1,2)
# mel_recon_padded, mel_padded, mel_lengths, refer_padded, refer_lengths
x_start = normalize_tacotron_mel(data['padded_mel'].to(device))
aligned_conditioning = latent
conditioning_latent = normalize_tacotron_mel(data['padded_mel_refer'].to(device))
t = torch.randint(0, self.desired_diffusion_steps, (x_start.shape[0],), device=device).long().to(device)
with self.accelerator.autocast():
loss = self.diffuser.training_losses(
model = self.diffusion,
x_start = x_start,
t = t,
model_kwargs = {
"hint": aligned_conditioning,
"refer": conditioning_latent
},
)["loss"].mean()
unused_params =[]
model = self.accelerator.unwrap_model(self.diffusion)
unused_params.extend(list(model.refer_model.blocks.parameters()))
unused_params.extend(list(model.refer_model.out.parameters()))
unused_params.extend(list(model.refer_model.hint_converter.parameters()))
unused_params.extend(list(model.refer_enc.visual.proj))
extraneous_addition = 0
for p in unused_params:
extraneous_addition = extraneous_addition + p.mean()
loss = loss + 0*extraneous_addition
loss = loss / self.gradient_accumulate_every
total_loss += loss.item()
self.accelerator.backward(loss)
grad_norm = get_grad_norm(self.diffusion)
accelerator.clip_grad_norm_(self.diffusion.parameters(), 1.0)
pbar.set_description(f'loss: {total_loss:.4f}')
accelerator.wait_for_everyone()
self.optimizer.step()
self.optimizer.zero_grad()
self.scheduler.step()
accelerator.wait_for_everyone()
# if accelerator.is_main_process:
# update_moving_average(self.ema_updater,self.ema_model,self.diffusion)
if accelerator.is_main_process and self.step % self.val_freq == 0:
scalar_dict = {"loss": total_loss, "loss/grad": grad_norm, "lr":self.scheduler.get_last_lr()[0]}
summarize(
writer=writer,
global_step=self.step,
scalars=scalar_dict
)
if accelerator.is_main_process and self.step % self.cfg['train']['save_freq'] == 0:
self.ema_model.eval()
data = next(self.eval_dataloader)
text_padded, mel_code_padded, mel_padded, mel_lengths,\
refer_padded, refer_lengths = data['padded_text'].to(device), data['padded_mel_code'].to(device), data['padded_mel'], data['mel_lengths'], data['padded_mel_refer'].to(device), data['mel_refer_lengths']
text_padded, mel_code_padded, refer_padded = text_padded.to(device), mel_code_padded.to(device), refer_padded.to(device)
with torch.no_grad():
latent = self.gpt(refer_padded, text_padded,
torch.tensor([text_padded.shape[-1]], device=device), mel_code_padded,
torch.tensor([mel_code_padded.shape[-1]*self.mel_length_compression], device=device),
return_latent=True, clip_inputs=False).transpose(1,2)
refer_padded = normalize_tacotron_mel(refer_padded)
with torch.no_grad():
diffusion = self.accelerator.unwrap_model(self.diffusion)
mel = do_spectrogram_diffusion(diffusion, self.infer_diffuser,latent,refer_padded,temperature=0.8)
mel = mel.detach().cpu()
milestone = self.step // self.cfg['train']['save_freq']
gen = self.vocos.decode(mel)
torchaudio.save(str(self.logs_folder / f'sample-{milestone}.wav'), gen, 24000)
audio_dict = {}
audio_dict.update({
f"gen/audio": gen,
})
image_dict = {
f"gt/mel": plot_spectrogram_to_numpy(mel_padded[0, :, :].detach().unsqueeze(-1).cpu()),
f"gen/mel": plot_spectrogram_to_numpy(mel[0, :, :].detach().unsqueeze(-1).cpu()),
}
summarize(
writer=writer_eval,
audios=audio_dict,
global_step=self.step,
images=image_dict,
)
keep_ckpts = self.cfg['train']['keep_ckpts']
if keep_ckpts > 0:
clean_checkpoints(path_to_models=self.logs_folder, n_ckpts_to_keep=keep_ckpts, sort_by_time=True)
self.save(self.step//1000)
self.ema_model.train()
self.step += 1
pbar.update(1)
accelerator.print('training complete')
if __name__ == '__main__':
trainer = Trainer()
trainer.load('/home/hyc/tortoise_plus_zh/ttts/diffusion/logs/2024-01-09-17-44-36/model-855.pt')
trainer.train()
|