File size: 4,534 Bytes
4ee33aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
from typing import Optional

import torch
from torch import nn
from torch.nn.utils import weight_norm

from ttts.vocoder.modules import ConvNeXtBlock, ResBlock1, AdaLayerNorm


class Backbone(nn.Module):
    """Base class for the generator's backbone. It preserves the same temporal resolution across all layers."""

    def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
        """
        Args:
            x (Tensor): Input tensor of shape (B, C, L), where B is the batch size,
                        C denotes output features, and L is the sequence length.

        Returns:
            Tensor: Output of shape (B, L, H), where B is the batch size, L is the sequence length,
                    and H denotes the model dimension.
        """
        raise NotImplementedError("Subclasses must implement the forward method.")


class VocosBackbone(Backbone):
    """
    Vocos backbone module built with ConvNeXt blocks. Supports additional conditioning with Adaptive Layer Normalization

    Args:
        input_channels (int): Number of input features channels.
        dim (int): Hidden dimension of the model.
        intermediate_dim (int): Intermediate dimension used in ConvNeXtBlock.
        num_layers (int): Number of ConvNeXtBlock layers.
        layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to `1 / num_layers`.
        adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm.
                                                None means non-conditional model. Defaults to None.
    """

    def __init__(
        self,
        input_channels: int,
        dim: int,
        intermediate_dim: int,
        num_layers: int,
        layer_scale_init_value: Optional[float] = None,
        adanorm_num_embeddings: Optional[int] = None,
    ):
        super().__init__()
        self.input_channels = input_channels
        self.embed = nn.Conv1d(input_channels, dim, kernel_size=7, padding=3)
        self.adanorm = adanorm_num_embeddings is not None
        if adanorm_num_embeddings:
            self.norm = AdaLayerNorm(adanorm_num_embeddings, dim, eps=1e-6)
        else:
            self.norm = nn.LayerNorm(dim, eps=1e-6)
        layer_scale_init_value = layer_scale_init_value or 1 / num_layers
        self.convnext = nn.ModuleList(
            [
                ConvNeXtBlock(
                    dim=dim,
                    intermediate_dim=intermediate_dim,
                    layer_scale_init_value=layer_scale_init_value,
                    adanorm_num_embeddings=adanorm_num_embeddings,
                )
                for _ in range(num_layers)
            ]
        )
        self.final_layer_norm = nn.LayerNorm(dim, eps=1e-6)
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, (nn.Conv1d, nn.Linear)):
            nn.init.trunc_normal_(m.weight, std=0.02)
            nn.init.constant_(m.bias, 0)

    def forward(self, x: torch.Tensor, bandwidth_id: Optional[torch.Tensor] = None) -> torch.Tensor:
        x = self.embed(x)
        if self.adanorm:
            assert bandwidth_id is not None
            x = self.norm(x.transpose(1, 2), cond_embedding_id=bandwidth_id)
        else:
            x = self.norm(x.transpose(1, 2))
        x = x.transpose(1, 2)
        for conv_block in self.convnext:
            x = conv_block(x, cond_embedding_id=bandwidth_id)
        x = self.final_layer_norm(x.transpose(1, 2))
        return x


class VocosResNetBackbone(Backbone):
    """
    Vocos backbone module built with ResBlocks.

    Args:
        input_channels (int): Number of input features channels.
        dim (int): Hidden dimension of the model.
        num_blocks (int): Number of ResBlock1 blocks.
        layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to None.
    """

    def __init__(
        self, input_channels, dim, num_blocks, layer_scale_init_value=None,
    ):
        super().__init__()
        self.input_channels = input_channels
        self.embed = weight_norm(nn.Conv1d(input_channels, dim, kernel_size=3, padding=1))
        layer_scale_init_value = layer_scale_init_value or 1 / num_blocks / 3
        self.resnet = nn.Sequential(
            *[ResBlock1(dim=dim, layer_scale_init_value=layer_scale_init_value) for _ in range(num_blocks)]
        )

    def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
        x = self.embed(x)
        x = self.resnet(x)
        x = x.transpose(1, 2)
        return x