File size: 27,136 Bytes
4ee33aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
import json
import os
from pathlib import Path
from datetime import datetime
from matplotlib import pyplot as plt
from ttts.unet1d.embeddings import TextTimeEmbedding
from ttts.unet1d.unet_1d_condition import UNet1DConditionModel
from vocos import Vocos
from torch import expm1, nn
import ttts.diffusion.commons as commons
from accelerate import Accelerator
from ttts.diffusion.operations import OPERATIONS_ENCODER
from accelerate import DistributedDataParallelKwargs
import math
from multiprocessing import cpu_count
from pathlib import Path
from random import random
from functools import partial
from collections import namedtuple
from torch.utils.tensorboard import SummaryWriter
import logging
import torch
import torch.nn.functional as F
from torch import nn, einsum
from torch.optim import AdamW
from torch.utils.data import Dataset, DataLoader

from einops import rearrange, reduce, repeat
from einops.layers.torch import Rearrange

from tqdm.auto import tqdm
TACOTRON_MEL_MAX = 5.5451774444795624753378569716654
TACOTRON_MEL_MIN = -16.118095650958319788125940182791
# TACOTRON_MEL_MIN = -11.512925464970228420089957273422
# -16.118095650958319788125940182791


def denormalize_tacotron_mel(norm_mel):
    return ((norm_mel+1)/2)*(TACOTRON_MEL_MAX-TACOTRON_MEL_MIN)+TACOTRON_MEL_MIN


def normalize_tacotron_mel(mel):
    return 2 * ((mel - TACOTRON_MEL_MIN) / (TACOTRON_MEL_MAX - TACOTRON_MEL_MIN)) - 1


def exists(x):
    return x is not None

def cycle(dl):
    while True:
        for data in dl:
            yield data

def count_parameters(model):
    return sum(p.numel() for p in model.parameters() if p.requires_grad)

class TransformerEncoderLayer(nn.Module):
    def __init__(self, layer, hidden_size, dropout):
        super().__init__()
        self.layer = layer
        self.hidden_size = hidden_size
        self.dropout = dropout
        self.op = OPERATIONS_ENCODER[layer](hidden_size, dropout)

    def forward(self, x, **kwargs):
        return self.op(x, **kwargs)

def LayerNorm(normalized_shape, eps=1e-5, elementwise_affine=True, export=False):
    return torch.nn.LayerNorm(normalized_shape, eps, elementwise_affine)
class ConvTBC(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, padding=0):
        super(ConvTBC, self).__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = kernel_size
        self.padding = padding

        self.weight = torch.nn.Parameter(torch.Tensor(
            self.kernel_size, in_channels, out_channels))
        self.bias = torch.nn.Parameter(torch.Tensor(out_channels))

    def forward(self, input):
        return torch.conv_tbc(input.contiguous(), self.weight, self.bias, self.padding)

class ConvLayer(nn.Module):
    def __init__(self, c_in, c_out, kernel_size, dropout=0):
        super().__init__()
        self.layer_norm = LayerNorm(c_in)
        conv = ConvTBC(c_in, c_out, kernel_size, padding=kernel_size // 2)
        std = math.sqrt((4 * (1.0 - dropout)) / (kernel_size * c_in))
        nn.init.normal_(conv.weight, mean=0, std=std)
        nn.init.constant_(conv.bias, 0)
        self.conv = conv

    def forward(self, x, encoder_padding_mask=None, **kwargs):
        layer_norm_training = kwargs.get('layer_norm_training', None)
        if layer_norm_training is not None:
            self.layer_norm.training = layer_norm_training
        if encoder_padding_mask is not None:
            x = x.masked_fill(encoder_padding_mask.t().unsqueeze(-1), 0)
        x = self.layer_norm(x)
        x = self.conv(x)
        return x

class PhoneEncoder(nn.Module):
    def __init__(self,
      in_channels=128,
      hidden_channels=512,
      out_channels=512,
      n_layers=6,
      p_dropout=0.2,
      last_ln = True):
        super().__init__()
        self.arch = [8 for _ in range(n_layers)]
        self.num_layers = n_layers
        self.hidden_size = hidden_channels
        self.padding_idx = 0
        self.dropout = p_dropout
        self.layers = nn.ModuleList([])
        self.layers.extend([
            TransformerEncoderLayer(self.arch[i], self.hidden_size, self.dropout)
            for i in range(self.num_layers)
        ])
        self.last_ln = last_ln
        self.pre = ConvLayer(in_channels, hidden_channels, 1, p_dropout)
        # self.prompt_proj = ConvLayer(in_channels, hidden_channels, 1, p_dropout)
        self.out_proj = ConvLayer(hidden_channels, out_channels, 1, p_dropout)
        if last_ln:
            self.layer_norm = LayerNorm(out_channels)
        self.spk_proj = nn.Conv1d(100,hidden_channels,1)

    def forward(self, src_tokens, lengths, g=None):
        # B x C x T -> T x B x C
        src_tokens = self.spk_proj(src_tokens+g)
        src_tokens = rearrange(src_tokens, 'b c t -> t b c')
        # compute padding mask
        encoder_padding_mask = ~commons.sequence_mask(lengths, src_tokens.size(0)).to(torch.bool)
        # prompt_mask = ~commons.sequence_mask(prompt_lengths, prompt.size(0)).to(torch.bool)
        x = src_tokens

        x = self.pre(x, encoder_padding_mask=encoder_padding_mask)
        x = x * (1 - encoder_padding_mask.float()).transpose(0, 1)[..., None]
        # prompt = self.prompt_proj(prompt, encoder_padding_mask=prompt_mask)
        # encoder layers
        for i in range(self.num_layers):
            x = self.layers[i](x, encoder_padding_mask=encoder_padding_mask)
            # x = x+self.attn_blocks[i](x, prompt, prompt, key_padding_mask=prompt_mask)[0]
        x = self.out_proj(x, encoder_padding_mask=encoder_padding_mask)
        if self.last_ln:
            x = self.layer_norm(x)
            x = x * (1 - encoder_padding_mask.float()).transpose(0, 1)[..., None]
        x = rearrange(x, 't b c-> b c t')
        return x

class PromptEncoder(nn.Module):
    def __init__(self,
      in_channels=128,
      hidden_channels=256,
      out_channels=512,
      n_layers=6,
      p_dropout=0.2,
      last_ln = True):
        super().__init__()
        self.arch = [8 for _ in range(n_layers)]
        self.num_layers = n_layers
        self.hidden_size = hidden_channels
        self.padding_idx = 0
        self.dropout = p_dropout
        self.layers = nn.ModuleList([])
        self.layers.extend([
            TransformerEncoderLayer(self.arch[i], self.hidden_size, self.dropout)
            for i in range(self.num_layers)
        ])
        self.last_ln = last_ln
        if last_ln:
            self.layer_norm = LayerNorm(out_channels)
        self.pre = ConvLayer(in_channels, hidden_channels, 1, p_dropout)
        self.out_proj = ConvLayer(hidden_channels, out_channels, 1, p_dropout)

    def forward(self, src_tokens, lengths=None):
        # B x C x T -> T x B x C
        src_tokens = rearrange(src_tokens, 'b c t -> t b c')
        # compute padding mask
        encoder_padding_mask = ~commons.sequence_mask(lengths, src_tokens.size(0)).to(torch.bool)
        x = src_tokens

        x = self.pre(x, encoder_padding_mask=encoder_padding_mask)
        x = x * (1 - encoder_padding_mask.float()).transpose(0, 1)[..., None]
        # encoder layers
        for layer in self.layers:
            x = layer(x, encoder_padding_mask=encoder_padding_mask)

        x = self.out_proj(x, encoder_padding_mask=encoder_padding_mask)

        if self.last_ln:
            x = self.layer_norm(x)
            x = x * (1 - encoder_padding_mask.float()).transpose(0, 1)[..., None]
        x = rearrange(x, 't b c-> b c t')
        return x

class SinusoidalPosEmb(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim

    def forward(self, x):
        device = x.device
        half_dim = self.dim // 2
        emb = math.log(10000) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
        emb = x[:, None] * emb[None, :]
        emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
        return emb

@torch.jit.script
def silu(x):
  return x * torch.sigmoid(x)
class ResidualBlock(nn.Module):
  def __init__(self, n_mels, residual_channels, dilation, kernel_size, dropout):
    '''
    :param n_mels: inplanes of conv1x1 for spectrogram conditional
    :param residual_channels: audio conv
    :param dilation: audio conv dilation
    :param uncond: disable spectrogram conditional
    '''
    super().__init__()
    if dilation==1:
        padding = kernel_size//2
    else:
        padding = dilation
    self.dilated_conv = ConvLayer(residual_channels, 2 * residual_channels, kernel_size)
    self.conditioner_projection = ConvLayer(n_mels, 2 * residual_channels, 1)
    # self.output_projection = ConvLayer(residual_channels, 2 * residual_channels, 1)
    self.output_projection = ConvLayer(residual_channels, residual_channels, 1)
    self.t_proj = ConvLayer(residual_channels, residual_channels, 1)
    self.drop = nn.Dropout(dropout)

  def forward(self, x, diffusion_step, conditioner,x_mask):
    assert (conditioner is None and self.conditioner_projection is None) or \
           (conditioner is not None and self.conditioner_projection is not None)
    #T B C
    y = x + self.t_proj(diffusion_step.unsqueeze(0))
    y = y.masked_fill(x_mask.t().unsqueeze(-1), 0)
    conditioner = self.conditioner_projection(conditioner)
    conditioner = self.drop(conditioner)
    y = self.dilated_conv(y) + conditioner
    y = y.masked_fill(x_mask.t().unsqueeze(-1), 0)

    gate, filter_ = torch.chunk(y, 2, dim=-1)
    y = torch.sigmoid(gate) * torch.tanh(filter_)
    y = y.masked_fill(x_mask.t().unsqueeze(-1), 0)

    y = self.output_projection(y)
    return y
    # y = y.masked_fill(x_mask.t().unsqueeze(-1), 0)
    # residual, skip = torch.chunk(y, 2, dim=-1)
    # return (x + residual) / math.sqrt(2.0), skip

class Pre_model(nn.Module):
    def __init__(self, cfg) -> None:
        super().__init__()
        self.cfg = cfg
        self.phoneme_encoder = PhoneEncoder(**self.cfg['phoneme_encoder'])
        print("phoneme params:", count_parameters(self.phoneme_encoder))
        self.prompt_encoder = PromptEncoder(**self.cfg['prompt_encoder'])
        print("prompt params:", count_parameters(self.prompt_encoder))
        dim = self.cfg['phoneme_encoder']['out_channels']
        self.ref_enc = TextTimeEmbedding(100, 100, 1)
    def forward(self,data, g=None):
        mel_recon_padded, mel_padded, mel_lengths, refer_padded, refer_lengths = data
        mel_recon_padded, refer_padded = normalize_tacotron_mel(mel_recon_padded), normalize_tacotron_mel(refer_padded)
        g = self.ref_enc(refer_padded.transpose(1,2)).unsqueeze(-1)
        audio_prompt = self.prompt_encoder(refer_padded,refer_lengths)
        content = self.phoneme_encoder(mel_recon_padded, mel_lengths, g)

        return content, audio_prompt
    def infer(self, data):
        mel_recon_padded, refer_padded, mel_lengths, refer_lengths = data
        mel_recon_padded, refer_padded = normalize_tacotron_mel(mel_recon_padded), normalize_tacotron_mel(refer_padded)
        g = self.ref_enc(refer_padded.transpose(1,2)).unsqueeze(-1)
        audio_prompt = self.prompt_encoder(refer_padded,refer_lengths)
        content = self.phoneme_encoder(mel_recon_padded, mel_lengths, g)
        return content, audio_prompt

class Diffusion_Encoder(nn.Module):
  def __init__(self,
      in_channels=128,
      out_channels=128,
      hidden_channels=256,
      block_out_channels = [128,256,384,512],
      n_heads=8,
      p_dropout=0.2,
      ):
    super().__init__()
    self.in_channels = in_channels
    self.out_channels = out_channels
    self.hidden_channels = hidden_channels
    self.n_heads=n_heads
    self.unet = UNet1DConditionModel(
        in_channels=in_channels+hidden_channels,
        out_channels=out_channels,
        block_out_channels=block_out_channels,
        norm_num_groups=8,
        cross_attention_dim=hidden_channels,
        attention_head_dim=n_heads,
        addition_embed_type='text',
        resnet_time_scale_shift='scale_shift',
    )


  def forward(self, x, data, t):
    assert torch.isnan(x).any() == False
    contentvec, prompt, contentvec_lengths, prompt_lengths = data
    prompt = rearrange(prompt,' b c t-> b t c')
    x = torch.cat([x, contentvec], dim=1)

    prompt_mask = commons.sequence_mask(prompt_lengths, prompt.size(1)).to(torch.bool)
    x = self.unet(x, t, prompt, encoder_attention_mask=prompt_mask)

    return x.sample

# tensor helper functions

def log(t, eps = 1e-20):
    return torch.log(t.clamp(min = eps))

def extract(a, t, x_shape):
    b, *_ = t.shape
    out = a.gather(-1, t)
    return out.reshape(b, *((1,) * (len(x_shape) - 1)))
def linear_beta_schedule(timesteps):
    """
    linear schedule, proposed in original ddpm paper
    """
    scale = 1000 / timesteps
    beta_start = scale * 0.0001
    beta_end = scale * 0.02
    return torch.linspace(beta_start, beta_end, timesteps, dtype = torch.float64)
def default(val, d):
    if exists(val):
        return val
    return d() if callable(d) else d
ModelPrediction =  namedtuple('ModelPrediction', ['pred_noise', 'pred_x_start'])
class Diffuser(nn.Module):
    def __init__(self,
            cfg,
            ddim_sampling_eta = 0,
            min_snr_loss_weight = False,
            min_snr_gamma = 5,
            conditioning_free = True,
            conditioning_free_k  = 1.0
        ):
        super().__init__()
        self.pre_model = Pre_model(cfg)
        print("pre params: ", count_parameters(self.pre_model))
        self.diff_model = Diffusion_Encoder(**cfg['diffusion'])
        print("diff params: ", count_parameters(self.diff_model))
        self.dim = self.diff_model.in_channels
        timesteps = cfg['train']['timesteps']

        beta_schedule_fn = linear_beta_schedule
        betas = beta_schedule_fn(timesteps)

        alphas = 1. - betas
        alphas_cumprod = torch.cumprod(alphas, dim = 0)
        alphas_cumprod_prev = F.pad(alphas_cumprod[:-1], (1, 0), value = 1.)

        timesteps, = betas.shape
        self.num_timesteps = timesteps

        self.unconditioned_content = nn.Parameter(torch.randn(1,cfg['phoneme_encoder']['out_channels'],1))

        # self.sampling_timesteps = cfg['train']['sampling_timesteps']
        self.ddim_sampling_eta = ddim_sampling_eta
        register_buffer = lambda name, val: self.register_buffer(name, val.to(torch.float32))

        register_buffer('betas', betas)
        register_buffer('alphas_cumprod', alphas_cumprod)
        register_buffer('alphas_cumprod_prev', alphas_cumprod_prev)

        register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod))
        register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1. - alphas_cumprod))
        register_buffer('log_one_minus_alphas_cumprod', torch.log(1. - alphas_cumprod))
        register_buffer('sqrt_recip_alphas_cumprod', torch.sqrt(1. / alphas_cumprod))
        register_buffer('sqrt_recipm1_alphas_cumprod', torch.sqrt(1. / alphas_cumprod - 1))
        posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
        register_buffer('posterior_variance', posterior_variance)

        register_buffer('posterior_log_variance_clipped', torch.log(posterior_variance.clamp(min =1e-20)))
        register_buffer('posterior_mean_coef1', betas * torch.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))
        register_buffer('posterior_mean_coef2', (1. - alphas_cumprod_prev) * torch.sqrt(alphas) / (1. - alphas_cumprod))
        snr = alphas_cumprod / (1 - alphas_cumprod)

        maybe_clipped_snr = snr.clone()
        if min_snr_loss_weight:
            maybe_clipped_snr.clamp_(max = min_snr_gamma)

        register_buffer('loss_weight', maybe_clipped_snr)
        self.conditioning_free = conditioning_free
        self.conditioning_free_k  = conditioning_free_k
    def predict_noise_from_start(self, x_t, t, x0):
        return (
            (extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - x0) / \
            extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
        )
    def q_posterior(self, x_start, x_t, t):
        posterior_mean = (
            extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
            extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
        )
        posterior_variance = extract(self.posterior_variance, t, x_t.shape)
        posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
        return posterior_mean, posterior_variance, posterior_log_variance_clipped

    def model_predictions(self, x, t, data = None):
        model_output = self.diff_model(x,data, t)
        t = t.type(torch.int64) 
        x_start = model_output
        pred_noise = self.predict_noise_from_start(x, t, x_start)

        return ModelPrediction(pred_noise, x_start)
    def sample_fun(self, x, t, data = None):
        if self.conditioning_free:
            # data[1] = self.unconditioned_refer[]
            model_output_no_conditioning = self.diff_model(x, data, t)
        model_output = self.diff_model(x,data, t)
        t = t.type(torch.int64) 
        pred_noise = model_output
        if self.conditioning_free:
            cfk = self.conditioning_free_k
            model_output = (1 + cfk) * model_output - cfk * model_output_no_conditioning

        return pred_noise

    def p_mean_variance(self, x, t, data):
        preds = self.model_predictions(x, t, data)
        x_start = preds.pred_x_start

        model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start = x_start, x_t = x, t = t)
        return model_mean, posterior_variance, posterior_log_variance, x_start

    @torch.no_grad()
    def p_sample(self, x, t: int, data):
        b, *_, device = *x.shape, x.device
        batched_times = torch.full((b,), t, device = device, dtype = torch.long)
        model_mean, _, model_log_variance, x_start = self.p_mean_variance(x = x, t = batched_times, data=data)
        noise = torch.randn_like(x) if t > 0 else 0. # no noise if t == 0
        pred_img = model_mean + (0.5 * model_log_variance).exp() * noise
        return pred_img, x_start

    @torch.no_grad()
    def p_sample_loop(self, content, refer, lengths, refer_lengths, f0, uv, auto_predict_f0 = True):
        data = (content, refer, f0, 0, 0, lengths, refer_lengths, uv)
        content, refer = self.pre_model.infer(data)
        shape = (content.shape[1], self.dim, content.shape[0])
        batch, device = shape[0], refer.device

        img = torch.randn(shape, device = device)
        imgs = [img]

        x_start = None

        for t in tqdm(reversed(range(0, self.num_timesteps)), desc = 'sampling loop time step', total = self.num_timesteps):
            img, x_start = self.p_sample(img, t, (content,refer,lengths,refer_lengths))
            imgs.append(img)

        ret = img
        return ret

    @torch.no_grad()
    def ddim_sample(self, content, refer, lengths, refer_lengths, f0, uv, auto_predict_f0 = True):
        data = (content, refer, f0, 0, 0, lengths, refer_lengths, uv)
        content, refer = self.pre_model.infer(data,auto_predict_f0=auto_predict_f0)
        shape = (content.shape[1], self.dim, content.shape[0])
        batch, device, total_timesteps, sampling_timesteps, eta = shape[0], refer.device, self.num_timesteps, self.sampling_timesteps, self.ddim_sampling_eta

        times = torch.linspace(-1, total_timesteps - 1, steps = sampling_timesteps + 1)   # [-1, 0, 1, 2, ..., T-1] when sampling_timesteps == total_timesteps
        times = list(reversed(times.int().tolist()))
        time_pairs = list(zip(times[:-1], times[1:])) # [(T-1, T-2), (T-2, T-3), ..., (1, 0), (0, -1)]

        img = torch.randn(shape, device = device)
        imgs = [img]

        x_start = None

        for time, time_next in tqdm(time_pairs, desc = 'sampling loop time step'):
            time_cond = torch.full((batch,), time, device = device, dtype = torch.long)
            pred_noise, x_start, *_ = self.model_predictions(img, time_cond, (content,refer,lengths,refer_lengths))

            if time_next < 0:
                img = x_start
                imgs.append(img)
                continue

            alpha = self.alphas_cumprod[time]
            alpha_next = self.alphas_cumprod[time_next]

            sigma = eta * ((1 - alpha / alpha_next) * (1 - alpha_next) / (1 - alpha)).sqrt()
            c = (1 - alpha_next - sigma ** 2).sqrt()

            noise = torch.randn_like(img)

            img = x_start * alpha_next.sqrt() + \
                  c * pred_noise + \
                  sigma * noise

            imgs.append(img)

        ret = img
        return ret

    @torch.no_grad()
    def sample(self,
        mel_recon, refer, lengths, refer_lengths,
        # c, refer, f0, uv, lengths, refer_lengths, vocos,
         sampling_timesteps=100, sample_method='unipc'
        ):
        mel_recon, refer = normalize_tacotron_mel(mel_recon), normalize_tacotron_mel(refer)
        if refer.shape[0]==2:
            refer = refer[0].unsqueeze(0)
        self.sampling_timesteps = sampling_timesteps
        if sample_method == 'ddpm':
            sample_fn = self.p_sample_loop
            # audio = sample_fn(c, refer, lengths, refer_lengths, f0, uv, auto_predict_f0)
        elif sample_method == 'ddim':
            sample_fn = self.ddim_sample
            # audio = sample_fn(c, refer, lengths, refer_lengths, f0, uv, auto_predict_f0)
        elif sample_method == 'dpmsolver':
            from sampler.dpm_solver import NoiseScheduleVP, model_wrapper, DPM_Solver
            noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.betas)
            def my_wrapper(fn):
                def wrapped(x, t, **kwargs):
                    ret = fn(x, t, **kwargs)
                    self.bar.update(1)
                    return ret

                return wrapped

            # data = (c, refer, f0, 0, 0, lengths, refer_lengths, uv)
            # content, refer = self.pre_model.infer(data,auto_predict_f0=auto_predict_f0)
            shape = (content.shape[1], self.dim, content.shape[0])
            batch, device, total_timesteps, sampling_timesteps, eta = shape[0], refer.device, self.num_timesteps, self.sampling_timesteps, self.ddim_sampling_eta
            audio = torch.randn(shape, device = device)
            model_fn = model_wrapper(
                my_wrapper(self.sample_fun),
                noise_schedule,
                model_type="x_start",  #"noise" or "x_start" or "v" or "score"
                model_kwargs={"data":(content,refer,lengths,refer_lengths)}
            )
            dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++")

            steps = 40
            self.bar = tqdm(desc="sample time step", total=steps)
            audio = dpm_solver.sample(
                audio,
                steps=steps,
                order=2,
                skip_type="time_uniform",
                method="multistep",
            )
            self.bar.close()
        elif sample_method =='unipc':
            from ttts.sampler.uni_pc import NoiseScheduleVP, model_wrapper, UniPC
            noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.betas)

            def my_wrapper(fn):
                def wrapped(x, t, **kwargs):
                    ret = fn(x, t, **kwargs)
                    self.bar.update(1)
                    return ret

                return wrapped

            data = (mel_recon, refer, lengths, refer_lengths)
            content, refer = self.pre_model.infer(data)
            shape = (content.shape[0], self.dim, content.shape[2])
            batch, device, total_timesteps, sampling_timesteps, eta = shape[0], refer.device, self.num_timesteps, self.sampling_timesteps, self.ddim_sampling_eta
            audio = torch.randn(shape, device = device)
            model_fn = model_wrapper(
                my_wrapper(self.sample_fun),
                noise_schedule,
                model_type="noise",  #"noise" or "x_start" or "v" or "score"
                model_kwargs={"data":(content,refer,lengths,refer_lengths)}
            )
            uni_pc = UniPC(model_fn, noise_schedule, variant='bh2')
            steps = 30
            self.bar = tqdm(desc="sample time step", total=steps)
            mel = uni_pc.sample(
                audio,
                steps=steps,
                order=2,
                skip_type="time_uniform",
                method="multistep",
            )
            self.bar.close()

        # mel = audio
        # vocos.to(audio.device)
        # audio = vocos.decode(audio)

        # if audio.ndim == 3:
        #     audio = rearrange(audio, 'b 1 n -> b n')

        # return denormalize(mel)
        return denormalize_tacotron_mel(mel)

    def q_sample(self, x_start, t, noise = None):
        noise = default(noise, lambda: torch.randn_like(x_start))

        return (
            extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
            extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
        )

    def forward(self, data, conditioning_free=False):
        unused_params = []
        mel_recon_padded, mel_padded, mel_lengths, refer_padded, refer_lengths = data
        mel_recon_padded, mel_padded = normalize_tacotron_mel(mel_recon_padded), normalize_tacotron_mel(mel_recon_padded)
        assert mel_recon_padded.shape[2] == mel_padded.shape[2]
        b, d, n, device = *mel_padded.shape, mel_padded.device
        x_mask = torch.unsqueeze(commons.sequence_mask(mel_lengths, mel_padded.size(2)), 1).to(mel_padded.dtype)
        x_start = mel_padded*x_mask
        # get pre model outputs
        content, refer = self.pre_model(data)

        if conditioning_free==True:
            refer = self.unconditioned_refer.repeat(data[0].shape[0], 1 ,1) + refer.mean()*0
        else:
            unused_params.append(self.unconditioned_refer)
        t = torch.randint(0, self.num_timesteps, (b,), device=device).long()

        noise = torch.randn_like(x_start)*x_mask
        # noise sample
        x = self.q_sample(x_start = x_start, t = t, noise = noise)
        # predict and take gradient step
        model_out = self.diff_model(x,(content,refer,mel_lengths,refer_lengths), t)
        target = noise

        loss = F.mse_loss(model_out, target, reduction = 'none')
        loss_diff = reduce(loss, 'b ... -> b (...)', 'mean')
        loss_diff = loss_diff * extract(self.loss_weight, t, loss.shape)
        loss_diff = loss_diff.mean()

        loss = loss_diff

        extraneous_addition = 0
        for p in unused_params:
            extraneous_addition = extraneous_addition + p.mean()
        loss = loss + extraneous_addition * 0

        return loss

def get_grad_norm(model):
    total_norm = 0
    for name,p in model.named_parameters():
        try:
            param_norm = p.grad.data.norm(2)
            total_norm += param_norm.item() ** 2
        except:
            print(name)
    total_norm = total_norm ** (1. / 2) 
    return total_norm
logging.getLogger('matplotlib').setLevel(logging.WARNING)
logging.getLogger('numba').setLevel(logging.WARNING)