Spaces:
Sleeping
Sleeping
File size: 27,136 Bytes
4ee33aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 |
import json
import os
from pathlib import Path
from datetime import datetime
from matplotlib import pyplot as plt
from ttts.unet1d.embeddings import TextTimeEmbedding
from ttts.unet1d.unet_1d_condition import UNet1DConditionModel
from vocos import Vocos
from torch import expm1, nn
import ttts.diffusion.commons as commons
from accelerate import Accelerator
from ttts.diffusion.operations import OPERATIONS_ENCODER
from accelerate import DistributedDataParallelKwargs
import math
from multiprocessing import cpu_count
from pathlib import Path
from random import random
from functools import partial
from collections import namedtuple
from torch.utils.tensorboard import SummaryWriter
import logging
import torch
import torch.nn.functional as F
from torch import nn, einsum
from torch.optim import AdamW
from torch.utils.data import Dataset, DataLoader
from einops import rearrange, reduce, repeat
from einops.layers.torch import Rearrange
from tqdm.auto import tqdm
TACOTRON_MEL_MAX = 5.5451774444795624753378569716654
TACOTRON_MEL_MIN = -16.118095650958319788125940182791
# TACOTRON_MEL_MIN = -11.512925464970228420089957273422
# -16.118095650958319788125940182791
def denormalize_tacotron_mel(norm_mel):
return ((norm_mel+1)/2)*(TACOTRON_MEL_MAX-TACOTRON_MEL_MIN)+TACOTRON_MEL_MIN
def normalize_tacotron_mel(mel):
return 2 * ((mel - TACOTRON_MEL_MIN) / (TACOTRON_MEL_MAX - TACOTRON_MEL_MIN)) - 1
def exists(x):
return x is not None
def cycle(dl):
while True:
for data in dl:
yield data
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
class TransformerEncoderLayer(nn.Module):
def __init__(self, layer, hidden_size, dropout):
super().__init__()
self.layer = layer
self.hidden_size = hidden_size
self.dropout = dropout
self.op = OPERATIONS_ENCODER[layer](hidden_size, dropout)
def forward(self, x, **kwargs):
return self.op(x, **kwargs)
def LayerNorm(normalized_shape, eps=1e-5, elementwise_affine=True, export=False):
return torch.nn.LayerNorm(normalized_shape, eps, elementwise_affine)
class ConvTBC(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, padding=0):
super(ConvTBC, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.padding = padding
self.weight = torch.nn.Parameter(torch.Tensor(
self.kernel_size, in_channels, out_channels))
self.bias = torch.nn.Parameter(torch.Tensor(out_channels))
def forward(self, input):
return torch.conv_tbc(input.contiguous(), self.weight, self.bias, self.padding)
class ConvLayer(nn.Module):
def __init__(self, c_in, c_out, kernel_size, dropout=0):
super().__init__()
self.layer_norm = LayerNorm(c_in)
conv = ConvTBC(c_in, c_out, kernel_size, padding=kernel_size // 2)
std = math.sqrt((4 * (1.0 - dropout)) / (kernel_size * c_in))
nn.init.normal_(conv.weight, mean=0, std=std)
nn.init.constant_(conv.bias, 0)
self.conv = conv
def forward(self, x, encoder_padding_mask=None, **kwargs):
layer_norm_training = kwargs.get('layer_norm_training', None)
if layer_norm_training is not None:
self.layer_norm.training = layer_norm_training
if encoder_padding_mask is not None:
x = x.masked_fill(encoder_padding_mask.t().unsqueeze(-1), 0)
x = self.layer_norm(x)
x = self.conv(x)
return x
class PhoneEncoder(nn.Module):
def __init__(self,
in_channels=128,
hidden_channels=512,
out_channels=512,
n_layers=6,
p_dropout=0.2,
last_ln = True):
super().__init__()
self.arch = [8 for _ in range(n_layers)]
self.num_layers = n_layers
self.hidden_size = hidden_channels
self.padding_idx = 0
self.dropout = p_dropout
self.layers = nn.ModuleList([])
self.layers.extend([
TransformerEncoderLayer(self.arch[i], self.hidden_size, self.dropout)
for i in range(self.num_layers)
])
self.last_ln = last_ln
self.pre = ConvLayer(in_channels, hidden_channels, 1, p_dropout)
# self.prompt_proj = ConvLayer(in_channels, hidden_channels, 1, p_dropout)
self.out_proj = ConvLayer(hidden_channels, out_channels, 1, p_dropout)
if last_ln:
self.layer_norm = LayerNorm(out_channels)
self.spk_proj = nn.Conv1d(100,hidden_channels,1)
def forward(self, src_tokens, lengths, g=None):
# B x C x T -> T x B x C
src_tokens = self.spk_proj(src_tokens+g)
src_tokens = rearrange(src_tokens, 'b c t -> t b c')
# compute padding mask
encoder_padding_mask = ~commons.sequence_mask(lengths, src_tokens.size(0)).to(torch.bool)
# prompt_mask = ~commons.sequence_mask(prompt_lengths, prompt.size(0)).to(torch.bool)
x = src_tokens
x = self.pre(x, encoder_padding_mask=encoder_padding_mask)
x = x * (1 - encoder_padding_mask.float()).transpose(0, 1)[..., None]
# prompt = self.prompt_proj(prompt, encoder_padding_mask=prompt_mask)
# encoder layers
for i in range(self.num_layers):
x = self.layers[i](x, encoder_padding_mask=encoder_padding_mask)
# x = x+self.attn_blocks[i](x, prompt, prompt, key_padding_mask=prompt_mask)[0]
x = self.out_proj(x, encoder_padding_mask=encoder_padding_mask)
if self.last_ln:
x = self.layer_norm(x)
x = x * (1 - encoder_padding_mask.float()).transpose(0, 1)[..., None]
x = rearrange(x, 't b c-> b c t')
return x
class PromptEncoder(nn.Module):
def __init__(self,
in_channels=128,
hidden_channels=256,
out_channels=512,
n_layers=6,
p_dropout=0.2,
last_ln = True):
super().__init__()
self.arch = [8 for _ in range(n_layers)]
self.num_layers = n_layers
self.hidden_size = hidden_channels
self.padding_idx = 0
self.dropout = p_dropout
self.layers = nn.ModuleList([])
self.layers.extend([
TransformerEncoderLayer(self.arch[i], self.hidden_size, self.dropout)
for i in range(self.num_layers)
])
self.last_ln = last_ln
if last_ln:
self.layer_norm = LayerNorm(out_channels)
self.pre = ConvLayer(in_channels, hidden_channels, 1, p_dropout)
self.out_proj = ConvLayer(hidden_channels, out_channels, 1, p_dropout)
def forward(self, src_tokens, lengths=None):
# B x C x T -> T x B x C
src_tokens = rearrange(src_tokens, 'b c t -> t b c')
# compute padding mask
encoder_padding_mask = ~commons.sequence_mask(lengths, src_tokens.size(0)).to(torch.bool)
x = src_tokens
x = self.pre(x, encoder_padding_mask=encoder_padding_mask)
x = x * (1 - encoder_padding_mask.float()).transpose(0, 1)[..., None]
# encoder layers
for layer in self.layers:
x = layer(x, encoder_padding_mask=encoder_padding_mask)
x = self.out_proj(x, encoder_padding_mask=encoder_padding_mask)
if self.last_ln:
x = self.layer_norm(x)
x = x * (1 - encoder_padding_mask.float()).transpose(0, 1)[..., None]
x = rearrange(x, 't b c-> b c t')
return x
class SinusoidalPosEmb(nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
def forward(self, x):
device = x.device
half_dim = self.dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
emb = x[:, None] * emb[None, :]
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
return emb
@torch.jit.script
def silu(x):
return x * torch.sigmoid(x)
class ResidualBlock(nn.Module):
def __init__(self, n_mels, residual_channels, dilation, kernel_size, dropout):
'''
:param n_mels: inplanes of conv1x1 for spectrogram conditional
:param residual_channels: audio conv
:param dilation: audio conv dilation
:param uncond: disable spectrogram conditional
'''
super().__init__()
if dilation==1:
padding = kernel_size//2
else:
padding = dilation
self.dilated_conv = ConvLayer(residual_channels, 2 * residual_channels, kernel_size)
self.conditioner_projection = ConvLayer(n_mels, 2 * residual_channels, 1)
# self.output_projection = ConvLayer(residual_channels, 2 * residual_channels, 1)
self.output_projection = ConvLayer(residual_channels, residual_channels, 1)
self.t_proj = ConvLayer(residual_channels, residual_channels, 1)
self.drop = nn.Dropout(dropout)
def forward(self, x, diffusion_step, conditioner,x_mask):
assert (conditioner is None and self.conditioner_projection is None) or \
(conditioner is not None and self.conditioner_projection is not None)
#T B C
y = x + self.t_proj(diffusion_step.unsqueeze(0))
y = y.masked_fill(x_mask.t().unsqueeze(-1), 0)
conditioner = self.conditioner_projection(conditioner)
conditioner = self.drop(conditioner)
y = self.dilated_conv(y) + conditioner
y = y.masked_fill(x_mask.t().unsqueeze(-1), 0)
gate, filter_ = torch.chunk(y, 2, dim=-1)
y = torch.sigmoid(gate) * torch.tanh(filter_)
y = y.masked_fill(x_mask.t().unsqueeze(-1), 0)
y = self.output_projection(y)
return y
# y = y.masked_fill(x_mask.t().unsqueeze(-1), 0)
# residual, skip = torch.chunk(y, 2, dim=-1)
# return (x + residual) / math.sqrt(2.0), skip
class Pre_model(nn.Module):
def __init__(self, cfg) -> None:
super().__init__()
self.cfg = cfg
self.phoneme_encoder = PhoneEncoder(**self.cfg['phoneme_encoder'])
print("phoneme params:", count_parameters(self.phoneme_encoder))
self.prompt_encoder = PromptEncoder(**self.cfg['prompt_encoder'])
print("prompt params:", count_parameters(self.prompt_encoder))
dim = self.cfg['phoneme_encoder']['out_channels']
self.ref_enc = TextTimeEmbedding(100, 100, 1)
def forward(self,data, g=None):
mel_recon_padded, mel_padded, mel_lengths, refer_padded, refer_lengths = data
mel_recon_padded, refer_padded = normalize_tacotron_mel(mel_recon_padded), normalize_tacotron_mel(refer_padded)
g = self.ref_enc(refer_padded.transpose(1,2)).unsqueeze(-1)
audio_prompt = self.prompt_encoder(refer_padded,refer_lengths)
content = self.phoneme_encoder(mel_recon_padded, mel_lengths, g)
return content, audio_prompt
def infer(self, data):
mel_recon_padded, refer_padded, mel_lengths, refer_lengths = data
mel_recon_padded, refer_padded = normalize_tacotron_mel(mel_recon_padded), normalize_tacotron_mel(refer_padded)
g = self.ref_enc(refer_padded.transpose(1,2)).unsqueeze(-1)
audio_prompt = self.prompt_encoder(refer_padded,refer_lengths)
content = self.phoneme_encoder(mel_recon_padded, mel_lengths, g)
return content, audio_prompt
class Diffusion_Encoder(nn.Module):
def __init__(self,
in_channels=128,
out_channels=128,
hidden_channels=256,
block_out_channels = [128,256,384,512],
n_heads=8,
p_dropout=0.2,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.n_heads=n_heads
self.unet = UNet1DConditionModel(
in_channels=in_channels+hidden_channels,
out_channels=out_channels,
block_out_channels=block_out_channels,
norm_num_groups=8,
cross_attention_dim=hidden_channels,
attention_head_dim=n_heads,
addition_embed_type='text',
resnet_time_scale_shift='scale_shift',
)
def forward(self, x, data, t):
assert torch.isnan(x).any() == False
contentvec, prompt, contentvec_lengths, prompt_lengths = data
prompt = rearrange(prompt,' b c t-> b t c')
x = torch.cat([x, contentvec], dim=1)
prompt_mask = commons.sequence_mask(prompt_lengths, prompt.size(1)).to(torch.bool)
x = self.unet(x, t, prompt, encoder_attention_mask=prompt_mask)
return x.sample
# tensor helper functions
def log(t, eps = 1e-20):
return torch.log(t.clamp(min = eps))
def extract(a, t, x_shape):
b, *_ = t.shape
out = a.gather(-1, t)
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
def linear_beta_schedule(timesteps):
"""
linear schedule, proposed in original ddpm paper
"""
scale = 1000 / timesteps
beta_start = scale * 0.0001
beta_end = scale * 0.02
return torch.linspace(beta_start, beta_end, timesteps, dtype = torch.float64)
def default(val, d):
if exists(val):
return val
return d() if callable(d) else d
ModelPrediction = namedtuple('ModelPrediction', ['pred_noise', 'pred_x_start'])
class Diffuser(nn.Module):
def __init__(self,
cfg,
ddim_sampling_eta = 0,
min_snr_loss_weight = False,
min_snr_gamma = 5,
conditioning_free = True,
conditioning_free_k = 1.0
):
super().__init__()
self.pre_model = Pre_model(cfg)
print("pre params: ", count_parameters(self.pre_model))
self.diff_model = Diffusion_Encoder(**cfg['diffusion'])
print("diff params: ", count_parameters(self.diff_model))
self.dim = self.diff_model.in_channels
timesteps = cfg['train']['timesteps']
beta_schedule_fn = linear_beta_schedule
betas = beta_schedule_fn(timesteps)
alphas = 1. - betas
alphas_cumprod = torch.cumprod(alphas, dim = 0)
alphas_cumprod_prev = F.pad(alphas_cumprod[:-1], (1, 0), value = 1.)
timesteps, = betas.shape
self.num_timesteps = timesteps
self.unconditioned_content = nn.Parameter(torch.randn(1,cfg['phoneme_encoder']['out_channels'],1))
# self.sampling_timesteps = cfg['train']['sampling_timesteps']
self.ddim_sampling_eta = ddim_sampling_eta
register_buffer = lambda name, val: self.register_buffer(name, val.to(torch.float32))
register_buffer('betas', betas)
register_buffer('alphas_cumprod', alphas_cumprod)
register_buffer('alphas_cumprod_prev', alphas_cumprod_prev)
register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod))
register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1. - alphas_cumprod))
register_buffer('log_one_minus_alphas_cumprod', torch.log(1. - alphas_cumprod))
register_buffer('sqrt_recip_alphas_cumprod', torch.sqrt(1. / alphas_cumprod))
register_buffer('sqrt_recipm1_alphas_cumprod', torch.sqrt(1. / alphas_cumprod - 1))
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
register_buffer('posterior_variance', posterior_variance)
register_buffer('posterior_log_variance_clipped', torch.log(posterior_variance.clamp(min =1e-20)))
register_buffer('posterior_mean_coef1', betas * torch.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))
register_buffer('posterior_mean_coef2', (1. - alphas_cumprod_prev) * torch.sqrt(alphas) / (1. - alphas_cumprod))
snr = alphas_cumprod / (1 - alphas_cumprod)
maybe_clipped_snr = snr.clone()
if min_snr_loss_weight:
maybe_clipped_snr.clamp_(max = min_snr_gamma)
register_buffer('loss_weight', maybe_clipped_snr)
self.conditioning_free = conditioning_free
self.conditioning_free_k = conditioning_free_k
def predict_noise_from_start(self, x_t, t, x0):
return (
(extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - x0) / \
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
)
def q_posterior(self, x_start, x_t, t):
posterior_mean = (
extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
)
posterior_variance = extract(self.posterior_variance, t, x_t.shape)
posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def model_predictions(self, x, t, data = None):
model_output = self.diff_model(x,data, t)
t = t.type(torch.int64)
x_start = model_output
pred_noise = self.predict_noise_from_start(x, t, x_start)
return ModelPrediction(pred_noise, x_start)
def sample_fun(self, x, t, data = None):
if self.conditioning_free:
# data[1] = self.unconditioned_refer[]
model_output_no_conditioning = self.diff_model(x, data, t)
model_output = self.diff_model(x,data, t)
t = t.type(torch.int64)
pred_noise = model_output
if self.conditioning_free:
cfk = self.conditioning_free_k
model_output = (1 + cfk) * model_output - cfk * model_output_no_conditioning
return pred_noise
def p_mean_variance(self, x, t, data):
preds = self.model_predictions(x, t, data)
x_start = preds.pred_x_start
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start = x_start, x_t = x, t = t)
return model_mean, posterior_variance, posterior_log_variance, x_start
@torch.no_grad()
def p_sample(self, x, t: int, data):
b, *_, device = *x.shape, x.device
batched_times = torch.full((b,), t, device = device, dtype = torch.long)
model_mean, _, model_log_variance, x_start = self.p_mean_variance(x = x, t = batched_times, data=data)
noise = torch.randn_like(x) if t > 0 else 0. # no noise if t == 0
pred_img = model_mean + (0.5 * model_log_variance).exp() * noise
return pred_img, x_start
@torch.no_grad()
def p_sample_loop(self, content, refer, lengths, refer_lengths, f0, uv, auto_predict_f0 = True):
data = (content, refer, f0, 0, 0, lengths, refer_lengths, uv)
content, refer = self.pre_model.infer(data)
shape = (content.shape[1], self.dim, content.shape[0])
batch, device = shape[0], refer.device
img = torch.randn(shape, device = device)
imgs = [img]
x_start = None
for t in tqdm(reversed(range(0, self.num_timesteps)), desc = 'sampling loop time step', total = self.num_timesteps):
img, x_start = self.p_sample(img, t, (content,refer,lengths,refer_lengths))
imgs.append(img)
ret = img
return ret
@torch.no_grad()
def ddim_sample(self, content, refer, lengths, refer_lengths, f0, uv, auto_predict_f0 = True):
data = (content, refer, f0, 0, 0, lengths, refer_lengths, uv)
content, refer = self.pre_model.infer(data,auto_predict_f0=auto_predict_f0)
shape = (content.shape[1], self.dim, content.shape[0])
batch, device, total_timesteps, sampling_timesteps, eta = shape[0], refer.device, self.num_timesteps, self.sampling_timesteps, self.ddim_sampling_eta
times = torch.linspace(-1, total_timesteps - 1, steps = sampling_timesteps + 1) # [-1, 0, 1, 2, ..., T-1] when sampling_timesteps == total_timesteps
times = list(reversed(times.int().tolist()))
time_pairs = list(zip(times[:-1], times[1:])) # [(T-1, T-2), (T-2, T-3), ..., (1, 0), (0, -1)]
img = torch.randn(shape, device = device)
imgs = [img]
x_start = None
for time, time_next in tqdm(time_pairs, desc = 'sampling loop time step'):
time_cond = torch.full((batch,), time, device = device, dtype = torch.long)
pred_noise, x_start, *_ = self.model_predictions(img, time_cond, (content,refer,lengths,refer_lengths))
if time_next < 0:
img = x_start
imgs.append(img)
continue
alpha = self.alphas_cumprod[time]
alpha_next = self.alphas_cumprod[time_next]
sigma = eta * ((1 - alpha / alpha_next) * (1 - alpha_next) / (1 - alpha)).sqrt()
c = (1 - alpha_next - sigma ** 2).sqrt()
noise = torch.randn_like(img)
img = x_start * alpha_next.sqrt() + \
c * pred_noise + \
sigma * noise
imgs.append(img)
ret = img
return ret
@torch.no_grad()
def sample(self,
mel_recon, refer, lengths, refer_lengths,
# c, refer, f0, uv, lengths, refer_lengths, vocos,
sampling_timesteps=100, sample_method='unipc'
):
mel_recon, refer = normalize_tacotron_mel(mel_recon), normalize_tacotron_mel(refer)
if refer.shape[0]==2:
refer = refer[0].unsqueeze(0)
self.sampling_timesteps = sampling_timesteps
if sample_method == 'ddpm':
sample_fn = self.p_sample_loop
# audio = sample_fn(c, refer, lengths, refer_lengths, f0, uv, auto_predict_f0)
elif sample_method == 'ddim':
sample_fn = self.ddim_sample
# audio = sample_fn(c, refer, lengths, refer_lengths, f0, uv, auto_predict_f0)
elif sample_method == 'dpmsolver':
from sampler.dpm_solver import NoiseScheduleVP, model_wrapper, DPM_Solver
noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.betas)
def my_wrapper(fn):
def wrapped(x, t, **kwargs):
ret = fn(x, t, **kwargs)
self.bar.update(1)
return ret
return wrapped
# data = (c, refer, f0, 0, 0, lengths, refer_lengths, uv)
# content, refer = self.pre_model.infer(data,auto_predict_f0=auto_predict_f0)
shape = (content.shape[1], self.dim, content.shape[0])
batch, device, total_timesteps, sampling_timesteps, eta = shape[0], refer.device, self.num_timesteps, self.sampling_timesteps, self.ddim_sampling_eta
audio = torch.randn(shape, device = device)
model_fn = model_wrapper(
my_wrapper(self.sample_fun),
noise_schedule,
model_type="x_start", #"noise" or "x_start" or "v" or "score"
model_kwargs={"data":(content,refer,lengths,refer_lengths)}
)
dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++")
steps = 40
self.bar = tqdm(desc="sample time step", total=steps)
audio = dpm_solver.sample(
audio,
steps=steps,
order=2,
skip_type="time_uniform",
method="multistep",
)
self.bar.close()
elif sample_method =='unipc':
from ttts.sampler.uni_pc import NoiseScheduleVP, model_wrapper, UniPC
noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.betas)
def my_wrapper(fn):
def wrapped(x, t, **kwargs):
ret = fn(x, t, **kwargs)
self.bar.update(1)
return ret
return wrapped
data = (mel_recon, refer, lengths, refer_lengths)
content, refer = self.pre_model.infer(data)
shape = (content.shape[0], self.dim, content.shape[2])
batch, device, total_timesteps, sampling_timesteps, eta = shape[0], refer.device, self.num_timesteps, self.sampling_timesteps, self.ddim_sampling_eta
audio = torch.randn(shape, device = device)
model_fn = model_wrapper(
my_wrapper(self.sample_fun),
noise_schedule,
model_type="noise", #"noise" or "x_start" or "v" or "score"
model_kwargs={"data":(content,refer,lengths,refer_lengths)}
)
uni_pc = UniPC(model_fn, noise_schedule, variant='bh2')
steps = 30
self.bar = tqdm(desc="sample time step", total=steps)
mel = uni_pc.sample(
audio,
steps=steps,
order=2,
skip_type="time_uniform",
method="multistep",
)
self.bar.close()
# mel = audio
# vocos.to(audio.device)
# audio = vocos.decode(audio)
# if audio.ndim == 3:
# audio = rearrange(audio, 'b 1 n -> b n')
# return denormalize(mel)
return denormalize_tacotron_mel(mel)
def q_sample(self, x_start, t, noise = None):
noise = default(noise, lambda: torch.randn_like(x_start))
return (
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
)
def forward(self, data, conditioning_free=False):
unused_params = []
mel_recon_padded, mel_padded, mel_lengths, refer_padded, refer_lengths = data
mel_recon_padded, mel_padded = normalize_tacotron_mel(mel_recon_padded), normalize_tacotron_mel(mel_recon_padded)
assert mel_recon_padded.shape[2] == mel_padded.shape[2]
b, d, n, device = *mel_padded.shape, mel_padded.device
x_mask = torch.unsqueeze(commons.sequence_mask(mel_lengths, mel_padded.size(2)), 1).to(mel_padded.dtype)
x_start = mel_padded*x_mask
# get pre model outputs
content, refer = self.pre_model(data)
if conditioning_free==True:
refer = self.unconditioned_refer.repeat(data[0].shape[0], 1 ,1) + refer.mean()*0
else:
unused_params.append(self.unconditioned_refer)
t = torch.randint(0, self.num_timesteps, (b,), device=device).long()
noise = torch.randn_like(x_start)*x_mask
# noise sample
x = self.q_sample(x_start = x_start, t = t, noise = noise)
# predict and take gradient step
model_out = self.diff_model(x,(content,refer,mel_lengths,refer_lengths), t)
target = noise
loss = F.mse_loss(model_out, target, reduction = 'none')
loss_diff = reduce(loss, 'b ... -> b (...)', 'mean')
loss_diff = loss_diff * extract(self.loss_weight, t, loss.shape)
loss_diff = loss_diff.mean()
loss = loss_diff
extraneous_addition = 0
for p in unused_params:
extraneous_addition = extraneous_addition + p.mean()
loss = loss + extraneous_addition * 0
return loss
def get_grad_norm(model):
total_norm = 0
for name,p in model.named_parameters():
try:
param_norm = p.grad.data.norm(2)
total_norm += param_norm.item() ** 2
except:
print(name)
total_norm = total_norm ** (1. / 2)
return total_norm
logging.getLogger('matplotlib').setLevel(logging.WARNING)
logging.getLogger('numba').setLevel(logging.WARNING) |