# Copyright ESPnet (https://github.com/espnet/espnet). All Rights Reserved. # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) import logging from contextlib import contextmanager from distutils.version import LooseVersion from typing import Dict from typing import List from typing import Optional from typing import Tuple from typing import Union import torch import torch.nn.functional as F from funasr_detach.layers.abs_normalize import AbsNormalize from funasr_detach.losses.label_smoothing_loss import ( LabelSmoothingLoss, NllLoss, ) # noqa: H301 from funasr_detach.models.ctc import CTC from funasr_detach.models.decoder.abs_decoder import AbsDecoder from funasr_detach.models.encoder.abs_encoder import AbsEncoder from funasr_detach.frontends.abs_frontend import AbsFrontend from funasr_detach.models.postencoder.abs_postencoder import AbsPostEncoder from funasr_detach.models.preencoder.abs_preencoder import AbsPreEncoder from funasr_detach.models.specaug.abs_specaug import AbsSpecAug from funasr_detach.models.transformer.utils.add_sos_eos import add_sos_eos from funasr_detach.metrics import ErrorCalculator from funasr_detach.metrics.compute_acc import th_accuracy from funasr_detach.train_utils.device_funcs import force_gatherable from funasr_detach.models.base_model import FunASRModel if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"): from torch.cuda.amp import autocast else: # Nothing to do if torch<1.6.0 @contextmanager def autocast(enabled=True): yield class SAASRModel(FunASRModel): """CTC-attention hybrid Encoder-Decoder model""" def __init__( self, vocab_size: int, max_spk_num: int, token_list: Union[Tuple[str, ...], List[str]], frontend: Optional[AbsFrontend], specaug: Optional[AbsSpecAug], normalize: Optional[AbsNormalize], asr_encoder: AbsEncoder, spk_encoder: torch.nn.Module, decoder: AbsDecoder, ctc: CTC, spk_weight: float = 0.5, ctc_weight: float = 0.5, interctc_weight: float = 0.0, ignore_id: int = -1, lsm_weight: float = 0.0, length_normalized_loss: bool = False, report_cer: bool = True, report_wer: bool = True, sym_space: str = "", sym_blank: str = "", extract_feats_in_collect_stats: bool = True, ): assert 0.0 <= ctc_weight <= 1.0, ctc_weight assert 0.0 <= interctc_weight < 1.0, interctc_weight super().__init__() # note that eos is the same as sos (equivalent ID) self.blank_id = 0 self.sos = 1 self.eos = 2 self.vocab_size = vocab_size self.max_spk_num = max_spk_num self.ignore_id = ignore_id self.spk_weight = spk_weight self.ctc_weight = ctc_weight self.interctc_weight = interctc_weight self.token_list = token_list.copy() self.frontend = frontend self.specaug = specaug self.normalize = normalize self.asr_encoder = asr_encoder self.spk_encoder = spk_encoder if not hasattr(self.asr_encoder, "interctc_use_conditioning"): self.asr_encoder.interctc_use_conditioning = False if self.asr_encoder.interctc_use_conditioning: self.asr_encoder.conditioning_layer = torch.nn.Linear( vocab_size, self.asr_encoder.output_size() ) self.error_calculator = None # we set self.decoder = None in the CTC mode since # self.decoder parameters were never used and PyTorch complained # and threw an Exception in the multi-GPU experiment. # thanks Jeff Farris for pointing out the issue. if ctc_weight == 1.0: self.decoder = None else: self.decoder = decoder self.criterion_att = LabelSmoothingLoss( size=vocab_size, padding_idx=ignore_id, smoothing=lsm_weight, normalize_length=length_normalized_loss, ) self.criterion_spk = NllLoss( size=max_spk_num, padding_idx=ignore_id, normalize_length=length_normalized_loss, ) if report_cer or report_wer: self.error_calculator = ErrorCalculator( token_list, sym_space, sym_blank, report_cer, report_wer ) if ctc_weight == 0.0: self.ctc = None else: self.ctc = ctc self.extract_feats_in_collect_stats = extract_feats_in_collect_stats def forward( self, speech: torch.Tensor, speech_lengths: torch.Tensor, text: torch.Tensor, text_lengths: torch.Tensor, profile: torch.Tensor, profile_lengths: torch.Tensor, text_id: torch.Tensor, text_id_lengths: torch.Tensor, ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]: """Frontend + Encoder + Decoder + Calc loss Args: speech: (Batch, Length, ...) speech_lengths: (Batch, ) text: (Batch, Length) text_lengths: (Batch,) profile: (Batch, Length, Dim) profile_lengths: (Batch,) """ assert text_lengths.dim() == 1, text_lengths.shape # Check that batch_size is unified assert ( speech.shape[0] == speech_lengths.shape[0] == text.shape[0] == text_lengths.shape[0] ), (speech.shape, speech_lengths.shape, text.shape, text_lengths.shape) batch_size = speech.shape[0] # for data-parallel text = text[:, : text_lengths.max()] # 1. Encoder asr_encoder_out, encoder_out_lens, spk_encoder_out = self.encode( speech, speech_lengths ) intermediate_outs = None if isinstance(asr_encoder_out, tuple): intermediate_outs = asr_encoder_out[1] asr_encoder_out = asr_encoder_out[0] loss_att, loss_spk, acc_att, acc_spk, cer_att, wer_att = ( None, None, None, None, None, None, ) loss_ctc, cer_ctc = None, None stats = dict() # 1. CTC branch if self.ctc_weight != 0.0: loss_ctc, cer_ctc = self._calc_ctc_loss( asr_encoder_out, encoder_out_lens, text, text_lengths ) # Intermediate CTC (optional) loss_interctc = 0.0 if self.interctc_weight != 0.0 and intermediate_outs is not None: for layer_idx, intermediate_out in intermediate_outs: # we assume intermediate_out has the same length & padding # as those of encoder_out loss_ic, cer_ic = self._calc_ctc_loss( intermediate_out, encoder_out_lens, text, text_lengths ) loss_interctc = loss_interctc + loss_ic # Collect Intermedaite CTC stats stats["loss_interctc_layer{}".format(layer_idx)] = ( loss_ic.detach() if loss_ic is not None else None ) stats["cer_interctc_layer{}".format(layer_idx)] = cer_ic loss_interctc = loss_interctc / len(intermediate_outs) # calculate whole encoder loss loss_ctc = ( 1 - self.interctc_weight ) * loss_ctc + self.interctc_weight * loss_interctc # 2b. Attention decoder branch if self.ctc_weight != 1.0: loss_att, loss_spk, acc_att, acc_spk, cer_att, wer_att = ( self._calc_att_loss( asr_encoder_out, spk_encoder_out, encoder_out_lens, text, text_lengths, profile, profile_lengths, text_id, text_id_lengths, ) ) # 3. CTC-Att loss definition if self.ctc_weight == 0.0: loss_asr = loss_att elif self.ctc_weight == 1.0: loss_asr = loss_ctc else: loss_asr = self.ctc_weight * loss_ctc + (1 - self.ctc_weight) * loss_att if self.spk_weight == 0.0: loss = loss_asr else: loss = self.spk_weight * loss_spk + (1 - self.spk_weight) * loss_asr stats = dict( loss=loss.detach(), loss_asr=loss_asr.detach(), loss_att=loss_att.detach() if loss_att is not None else None, loss_ctc=loss_ctc.detach() if loss_ctc is not None else None, loss_spk=loss_spk.detach() if loss_spk is not None else None, acc=acc_att, acc_spk=acc_spk, cer=cer_att, wer=wer_att, cer_ctc=cer_ctc, ) # force_gatherable: to-device and to-tensor if scalar for DataParallel loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) return loss, stats, weight def collect_feats( self, speech: torch.Tensor, speech_lengths: torch.Tensor, text: torch.Tensor, text_lengths: torch.Tensor, ) -> Dict[str, torch.Tensor]: if self.extract_feats_in_collect_stats: feats, feats_lengths = self._extract_feats(speech, speech_lengths) else: # Generate dummy stats if extract_feats_in_collect_stats is False logging.warning( "Generating dummy stats for feats and feats_lengths, " "because encoder_conf.extract_feats_in_collect_stats is " f"{self.extract_feats_in_collect_stats}" ) feats, feats_lengths = speech, speech_lengths return {"feats": feats, "feats_lengths": feats_lengths} def encode( self, speech: torch.Tensor, speech_lengths: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: """Frontend + Encoder. Note that this method is used by asr_inference.py Args: speech: (Batch, Length, ...) speech_lengths: (Batch, ) """ with autocast(False): # 1. Extract feats feats, feats_lengths = self._extract_feats(speech, speech_lengths) # 2. Data augmentation feats_raw = feats.clone() if self.specaug is not None and self.training: feats, feats_lengths = self.specaug(feats, feats_lengths) # 3. Normalization for feature: e.g. Global-CMVN, Utterance-CMVN if self.normalize is not None: feats, feats_lengths = self.normalize(feats, feats_lengths) # 4. Forward encoder # feats: (Batch, Length, Dim) # -> encoder_out: (Batch, Length2, Dim2) if self.asr_encoder.interctc_use_conditioning: encoder_out, encoder_out_lens, _ = self.asr_encoder( feats, feats_lengths, ctc=self.ctc ) else: encoder_out, encoder_out_lens, _ = self.asr_encoder(feats, feats_lengths) intermediate_outs = None if isinstance(encoder_out, tuple): intermediate_outs = encoder_out[1] encoder_out = encoder_out[0] encoder_out_spk_ori = self.spk_encoder(feats_raw, feats_lengths)[0] # import ipdb;ipdb.set_trace() if encoder_out_spk_ori.size(1) != encoder_out.size(1): encoder_out_spk = F.interpolate( encoder_out_spk_ori.transpose(-2, -1), size=(encoder_out.size(1)), mode="nearest", ).transpose(-2, -1) else: encoder_out_spk = encoder_out_spk_ori assert encoder_out.size(0) == speech.size(0), ( encoder_out.size(), speech.size(0), ) assert encoder_out.size(1) <= encoder_out_lens.max(), ( encoder_out.size(), encoder_out_lens.max(), ) assert encoder_out_spk.size(0) == speech.size(0), ( encoder_out_spk.size(), speech.size(0), ) if intermediate_outs is not None: return (encoder_out, intermediate_outs), encoder_out_lens, encoder_out_spk return encoder_out, encoder_out_lens, encoder_out_spk def _extract_feats( self, speech: torch.Tensor, speech_lengths: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: assert speech_lengths.dim() == 1, speech_lengths.shape # for data-parallel speech = speech[:, : speech_lengths.max()] if self.frontend is not None: # Frontend # e.g. STFT and Feature extract # data_loader may send time-domain signal in this case # speech (Batch, NSamples) -> feats: (Batch, NFrames, Dim) feats, feats_lengths = self.frontend(speech, speech_lengths) else: # No frontend and no feature extract feats, feats_lengths = speech, speech_lengths return feats, feats_lengths def nll( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ys_pad: torch.Tensor, ys_pad_lens: torch.Tensor, ) -> torch.Tensor: """Compute negative log likelihood(nll) from transformer-decoder Normally, this function is called in batchify_nll. Args: encoder_out: (Batch, Length, Dim) encoder_out_lens: (Batch,) ys_pad: (Batch, Length) ys_pad_lens: (Batch,) """ ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) ys_in_lens = ys_pad_lens + 1 # 1. Forward decoder decoder_out, _ = self.decoder( encoder_out, encoder_out_lens, ys_in_pad, ys_in_lens ) # [batch, seqlen, dim] batch_size = decoder_out.size(0) decoder_num_class = decoder_out.size(2) # nll: negative log-likelihood nll = torch.nn.functional.cross_entropy( decoder_out.view(-1, decoder_num_class), ys_out_pad.view(-1), ignore_index=self.ignore_id, reduction="none", ) nll = nll.view(batch_size, -1) nll = nll.sum(dim=1) assert nll.size(0) == batch_size return nll def batchify_nll( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ys_pad: torch.Tensor, ys_pad_lens: torch.Tensor, batch_size: int = 100, ): """Compute negative log likelihood(nll) from transformer-decoder To avoid OOM, this fuction seperate the input into batches. Then call nll for each batch and combine and return results. Args: encoder_out: (Batch, Length, Dim) encoder_out_lens: (Batch,) ys_pad: (Batch, Length) ys_pad_lens: (Batch,) batch_size: int, samples each batch contain when computing nll, you may change this to avoid OOM or increase GPU memory usage """ total_num = encoder_out.size(0) if total_num <= batch_size: nll = self.nll(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens) else: nll = [] start_idx = 0 while True: end_idx = min(start_idx + batch_size, total_num) batch_encoder_out = encoder_out[start_idx:end_idx, :, :] batch_encoder_out_lens = encoder_out_lens[start_idx:end_idx] batch_ys_pad = ys_pad[start_idx:end_idx, :] batch_ys_pad_lens = ys_pad_lens[start_idx:end_idx] batch_nll = self.nll( batch_encoder_out, batch_encoder_out_lens, batch_ys_pad, batch_ys_pad_lens, ) nll.append(batch_nll) start_idx = end_idx if start_idx == total_num: break nll = torch.cat(nll) assert nll.size(0) == total_num return nll def _calc_att_loss( self, asr_encoder_out: torch.Tensor, spk_encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ys_pad: torch.Tensor, ys_pad_lens: torch.Tensor, profile: torch.Tensor, profile_lens: torch.Tensor, text_id: torch.Tensor, text_id_lengths: torch.Tensor, ): ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) ys_in_lens = ys_pad_lens + 1 # 1. Forward decoder decoder_out, weights_no_pad, _ = self.decoder( asr_encoder_out, spk_encoder_out, encoder_out_lens, ys_in_pad, ys_in_lens, profile, profile_lens, ) spk_num_no_pad = weights_no_pad.size(-1) pad = (0, self.max_spk_num - spk_num_no_pad) weights = F.pad(weights_no_pad, pad, mode="constant", value=0) # pre_id=weights.argmax(-1) # pre_text=decoder_out.argmax(-1) # id_mask=(pre_id==text_id).to(dtype=text_id.dtype) # pre_text_mask=pre_text*id_mask+1-id_mask #相同的地方不变,不同的地方设为1() # padding_mask= ys_out_pad != self.ignore_id # numerator = torch.sum(pre_text_mask.masked_select(padding_mask) == ys_out_pad.masked_select(padding_mask)) # denominator = torch.sum(padding_mask) # sd_acc = float(numerator) / float(denominator) # 2. Compute attention loss loss_att = self.criterion_att(decoder_out, ys_out_pad) loss_spk = self.criterion_spk(torch.log(weights), text_id) acc_spk = th_accuracy( weights.view(-1, self.max_spk_num), text_id, ignore_label=self.ignore_id, ) acc_att = th_accuracy( decoder_out.view(-1, self.vocab_size), ys_out_pad, ignore_label=self.ignore_id, ) # Compute cer/wer using attention-decoder if self.training or self.error_calculator is None: cer_att, wer_att = None, None else: ys_hat = decoder_out.argmax(dim=-1) cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu()) return loss_att, loss_spk, acc_att, acc_spk, cer_att, wer_att def _calc_ctc_loss( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ys_pad: torch.Tensor, ys_pad_lens: torch.Tensor, ): # Calc CTC loss loss_ctc = self.ctc(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens) # Calc CER using CTC cer_ctc = None if not self.training and self.error_calculator is not None: ys_hat = self.ctc.argmax(encoder_out).data cer_ctc = self.error_calculator(ys_hat.cpu(), ys_pad.cpu(), is_ctc=True) return loss_ctc, cer_ctc