#!/usr/bin/env python3 # -*- encoding: utf-8 -*- # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. # MIT License (https://opensource.org/licenses/MIT) import torch from funasr_detach.register import tables from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask class mae_loss(torch.nn.Module): def __init__(self, normalize_length=False): super(mae_loss, self).__init__() self.normalize_length = normalize_length self.criterion = torch.nn.L1Loss(reduction="sum") def forward(self, token_length, pre_token_length): loss_token_normalizer = token_length.size(0) if self.normalize_length: loss_token_normalizer = token_length.sum().type(torch.float32) loss = self.criterion(token_length, pre_token_length) loss = loss / loss_token_normalizer return loss def cif(hidden, alphas, threshold): batch_size, len_time, hidden_size = hidden.size() # loop varss integrate = torch.zeros([batch_size], device=hidden.device) frame = torch.zeros([batch_size, hidden_size], device=hidden.device) # intermediate vars along time list_fires = [] list_frames = [] for t in range(len_time): alpha = alphas[:, t] distribution_completion = ( torch.ones([batch_size], device=hidden.device) - integrate ) integrate += alpha list_fires.append(integrate) fire_place = integrate >= threshold integrate = torch.where( fire_place, integrate - torch.ones([batch_size], device=hidden.device), integrate, ) cur = torch.where(fire_place, distribution_completion, alpha) remainds = alpha - cur frame += cur[:, None] * hidden[:, t, :] list_frames.append(frame) frame = torch.where( fire_place[:, None].repeat(1, hidden_size), remainds[:, None] * hidden[:, t, :], frame, ) fires = torch.stack(list_fires, 1) frames = torch.stack(list_frames, 1) list_ls = [] len_labels = torch.round(alphas.sum(-1)).int() max_label_len = len_labels.max() for b in range(batch_size): fire = fires[b, :] l = torch.index_select( frames[b, :, :], 0, torch.nonzero(fire >= threshold).squeeze() ) pad_l = torch.zeros( [max_label_len - l.size(0), hidden_size], device=hidden.device ) list_ls.append(torch.cat([l, pad_l], 0)) return torch.stack(list_ls, 0), fires def cif_wo_hidden(alphas, threshold): batch_size, len_time = alphas.size() # loop varss integrate = torch.zeros([batch_size], device=alphas.device) # intermediate vars along time list_fires = [] for t in range(len_time): alpha = alphas[:, t] integrate += alpha list_fires.append(integrate) fire_place = integrate >= threshold integrate = torch.where( fire_place, integrate - torch.ones([batch_size], device=alphas.device) * threshold, integrate, ) fires = torch.stack(list_fires, 1) return fires @tables.register("predictor_classes", "CifPredictorV3") class CifPredictorV3(torch.nn.Module): def __init__( self, idim, l_order, r_order, threshold=1.0, dropout=0.1, smooth_factor=1.0, noise_threshold=0, tail_threshold=0.0, tf2torch_tensor_name_prefix_torch="predictor", tf2torch_tensor_name_prefix_tf="seq2seq/cif", smooth_factor2=1.0, noise_threshold2=0, upsample_times=5, upsample_type="cnn", use_cif1_cnn=True, tail_mask=True, ): super(CifPredictorV3, self).__init__() self.pad = torch.nn.ConstantPad1d((l_order, r_order), 0) self.cif_conv1d = torch.nn.Conv1d(idim, idim, l_order + r_order + 1) self.cif_output = torch.nn.Linear(idim, 1) self.dropout = torch.nn.Dropout(p=dropout) self.threshold = threshold self.smooth_factor = smooth_factor self.noise_threshold = noise_threshold self.tail_threshold = tail_threshold self.tf2torch_tensor_name_prefix_torch = tf2torch_tensor_name_prefix_torch self.tf2torch_tensor_name_prefix_tf = tf2torch_tensor_name_prefix_tf self.upsample_times = upsample_times self.upsample_type = upsample_type self.use_cif1_cnn = use_cif1_cnn if self.upsample_type == "cnn": self.upsample_cnn = torch.nn.ConvTranspose1d( idim, idim, self.upsample_times, self.upsample_times ) self.cif_output2 = torch.nn.Linear(idim, 1) elif self.upsample_type == "cnn_blstm": self.upsample_cnn = torch.nn.ConvTranspose1d( idim, idim, self.upsample_times, self.upsample_times ) self.blstm = torch.nn.LSTM( idim, idim, 1, bias=True, batch_first=True, dropout=0.0, bidirectional=True, ) self.cif_output2 = torch.nn.Linear(idim * 2, 1) elif self.upsample_type == "cnn_attn": self.upsample_cnn = torch.nn.ConvTranspose1d( idim, idim, self.upsample_times, self.upsample_times ) from funasr_detach.models.transformer.encoder import ( EncoderLayer as TransformerEncoderLayer, ) from funasr_detach.models.transformer.attention import MultiHeadedAttention from funasr_detach.models.transformer.positionwise_feed_forward import ( PositionwiseFeedForward, ) positionwise_layer_args = ( idim, idim * 2, 0.1, ) self.self_attn = TransformerEncoderLayer( idim, MultiHeadedAttention(4, idim, 0.1), PositionwiseFeedForward(*positionwise_layer_args), 0.1, True, # normalize_before, False, # concat_after, ) self.cif_output2 = torch.nn.Linear(idim, 1) self.smooth_factor2 = smooth_factor2 self.noise_threshold2 = noise_threshold2 def forward( self, hidden, target_label=None, mask=None, ignore_id=-1, mask_chunk_predictor=None, target_label_length=None, ): h = hidden context = h.transpose(1, 2) queries = self.pad(context) output = torch.relu(self.cif_conv1d(queries)) # alphas2 is an extra head for timestamp prediction if not self.use_cif1_cnn: _output = context else: _output = output if self.upsample_type == "cnn": output2 = self.upsample_cnn(_output) output2 = output2.transpose(1, 2) elif self.upsample_type == "cnn_blstm": output2 = self.upsample_cnn(_output) output2 = output2.transpose(1, 2) output2, (_, _) = self.blstm(output2) elif self.upsample_type == "cnn_attn": output2 = self.upsample_cnn(_output) output2 = output2.transpose(1, 2) output2, _ = self.self_attn(output2, mask) # import pdb; pdb.set_trace() alphas2 = torch.sigmoid(self.cif_output2(output2)) alphas2 = torch.nn.functional.relu( alphas2 * self.smooth_factor2 - self.noise_threshold2 ) # repeat the mask in T demension to match the upsampled length if mask is not None: mask2 = ( mask.repeat(1, self.upsample_times, 1) .transpose(-1, -2) .reshape(alphas2.shape[0], -1) ) mask2 = mask2.unsqueeze(-1) alphas2 = alphas2 * mask2 alphas2 = alphas2.squeeze(-1) token_num2 = alphas2.sum(-1) output = output.transpose(1, 2) output = self.cif_output(output) alphas = torch.sigmoid(output) alphas = torch.nn.functional.relu( alphas * self.smooth_factor - self.noise_threshold ) if mask is not None: mask = mask.transpose(-1, -2).float() alphas = alphas * mask if mask_chunk_predictor is not None: alphas = alphas * mask_chunk_predictor alphas = alphas.squeeze(-1) mask = mask.squeeze(-1) if target_label_length is not None: target_length = target_label_length elif target_label is not None: target_length = (target_label != ignore_id).float().sum(-1) else: target_length = None token_num = alphas.sum(-1) if target_length is not None: alphas *= (target_length / token_num)[:, None].repeat(1, alphas.size(1)) elif self.tail_threshold > 0.0: hidden, alphas, token_num = self.tail_process_fn( hidden, alphas, token_num, mask=mask ) acoustic_embeds, cif_peak = cif(hidden, alphas, self.threshold) if target_length is None and self.tail_threshold > 0.0: token_num_int = torch.max(token_num).type(torch.int32).item() acoustic_embeds = acoustic_embeds[:, :token_num_int, :] return acoustic_embeds, token_num, alphas, cif_peak, token_num2 def get_upsample_timestamp(self, hidden, mask=None, token_num=None): h = hidden b = hidden.shape[0] context = h.transpose(1, 2) queries = self.pad(context) output = torch.relu(self.cif_conv1d(queries)) # alphas2 is an extra head for timestamp prediction if not self.use_cif1_cnn: _output = context else: _output = output if self.upsample_type == "cnn": output2 = self.upsample_cnn(_output) output2 = output2.transpose(1, 2) elif self.upsample_type == "cnn_blstm": output2 = self.upsample_cnn(_output) output2 = output2.transpose(1, 2) output2, (_, _) = self.blstm(output2) elif self.upsample_type == "cnn_attn": output2 = self.upsample_cnn(_output) output2 = output2.transpose(1, 2) output2, _ = self.self_attn(output2, mask) alphas2 = torch.sigmoid(self.cif_output2(output2)) alphas2 = torch.nn.functional.relu( alphas2 * self.smooth_factor2 - self.noise_threshold2 ) # repeat the mask in T demension to match the upsampled length if mask is not None: mask2 = ( mask.repeat(1, self.upsample_times, 1) .transpose(-1, -2) .reshape(alphas2.shape[0], -1) ) mask2 = mask2.unsqueeze(-1) alphas2 = alphas2 * mask2 alphas2 = alphas2.squeeze(-1) _token_num = alphas2.sum(-1) if token_num is not None: alphas2 *= (token_num / _token_num)[:, None].repeat(1, alphas2.size(1)) # re-downsample ds_alphas = alphas2.reshape(b, -1, self.upsample_times).sum(-1) ds_cif_peak = cif_wo_hidden(ds_alphas, self.threshold - 1e-4) # upsampled alphas and cif_peak us_alphas = alphas2 us_cif_peak = cif_wo_hidden(us_alphas, self.threshold - 1e-4) return ds_alphas, ds_cif_peak, us_alphas, us_cif_peak def tail_process_fn(self, hidden, alphas, token_num=None, mask=None): b, t, d = hidden.size() tail_threshold = self.tail_threshold if mask is not None: zeros_t = torch.zeros((b, 1), dtype=torch.float32, device=alphas.device) ones_t = torch.ones_like(zeros_t) mask_1 = torch.cat([mask, zeros_t], dim=1) mask_2 = torch.cat([ones_t, mask], dim=1) mask = mask_2 - mask_1 tail_threshold = mask * tail_threshold alphas = torch.cat([alphas, zeros_t], dim=1) alphas = torch.add(alphas, tail_threshold) else: tail_threshold = torch.tensor([tail_threshold], dtype=alphas.dtype).to( alphas.device ) tail_threshold = torch.reshape(tail_threshold, (1, 1)) alphas = torch.cat([alphas, tail_threshold], dim=1) zeros = torch.zeros((b, 1, d), dtype=hidden.dtype).to(hidden.device) hidden = torch.cat([hidden, zeros], dim=1) token_num = alphas.sum(dim=-1) token_num_floor = torch.floor(token_num) return hidden, alphas, token_num_floor def gen_frame_alignments( self, alphas: torch.Tensor = None, encoder_sequence_length: torch.Tensor = None ): batch_size, maximum_length = alphas.size() int_type = torch.int32 is_training = self.training if is_training: token_num = torch.round(torch.sum(alphas, dim=1)).type(int_type) else: token_num = torch.floor(torch.sum(alphas, dim=1)).type(int_type) max_token_num = torch.max(token_num).item() alphas_cumsum = torch.cumsum(alphas, dim=1) alphas_cumsum = torch.floor(alphas_cumsum).type(int_type) alphas_cumsum = alphas_cumsum[:, None, :].repeat(1, max_token_num, 1) index = torch.ones([batch_size, max_token_num], dtype=int_type) index = torch.cumsum(index, dim=1) index = index[:, :, None].repeat(1, 1, maximum_length).to(alphas_cumsum.device) index_div = torch.floor(torch.true_divide(alphas_cumsum, index)).type(int_type) index_div_bool_zeros = index_div.eq(0) index_div_bool_zeros_count = torch.sum(index_div_bool_zeros, dim=-1) + 1 index_div_bool_zeros_count = torch.clamp( index_div_bool_zeros_count, 0, encoder_sequence_length.max() ) token_num_mask = (~make_pad_mask(token_num, maxlen=max_token_num)).to( token_num.device ) index_div_bool_zeros_count *= token_num_mask index_div_bool_zeros_count_tile = index_div_bool_zeros_count[:, :, None].repeat( 1, 1, maximum_length ) ones = torch.ones_like(index_div_bool_zeros_count_tile) zeros = torch.zeros_like(index_div_bool_zeros_count_tile) ones = torch.cumsum(ones, dim=2) cond = index_div_bool_zeros_count_tile == ones index_div_bool_zeros_count_tile = torch.where(cond, zeros, ones) index_div_bool_zeros_count_tile_bool = index_div_bool_zeros_count_tile.type( torch.bool ) index_div_bool_zeros_count_tile = 1 - index_div_bool_zeros_count_tile_bool.type( int_type ) index_div_bool_zeros_count_tile_out = torch.sum( index_div_bool_zeros_count_tile, dim=1 ) index_div_bool_zeros_count_tile_out = index_div_bool_zeros_count_tile_out.type( int_type ) predictor_mask = ( ( ~make_pad_mask( encoder_sequence_length, maxlen=encoder_sequence_length.max() ) ) .type(int_type) .to(encoder_sequence_length.device) ) index_div_bool_zeros_count_tile_out = ( index_div_bool_zeros_count_tile_out * predictor_mask ) predictor_alignments = index_div_bool_zeros_count_tile_out predictor_alignments_length = predictor_alignments.sum(-1).type( encoder_sequence_length.dtype ) return predictor_alignments.detach(), predictor_alignments_length.detach()