# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time import torch import torch.nn.functional as F from cosyvoice.matcha.flow_matching import BASECFM class ConditionalCFM(BASECFM): def __init__( self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None, ): super().__init__( n_feats=in_channels, cfm_params=cfm_params, n_spks=n_spks, spk_emb_dim=spk_emb_dim, ) self.t_scheduler = cfm_params.t_scheduler self.training_cfg_rate = cfm_params.training_cfg_rate self.inference_cfg_rate = cfm_params.inference_cfg_rate in_channels = in_channels + (spk_emb_dim if n_spks > 0 else 0) # Just change the architecture of the estimator here self.estimator = estimator self.inference_graphs = {} self.inference_buffers = {} # self.capture_inference() @torch.inference_mode() def forward( self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, ): """Forward diffusion Args: mu (torch.Tensor): output of encoder shape: (batch_size, n_feats, mel_timesteps) mask (torch.Tensor): output_mask shape: (batch_size, 1, mel_timesteps) n_timesteps (int): number of diffusion steps temperature (float, optional): temperature for scaling noise. Defaults to 1.0. spks (torch.Tensor, optional): speaker ids. Defaults to None. shape: (batch_size, spk_emb_dim) cond: Not used but kept for future purposes Returns: sample: generated mel-spectrogram shape: (batch_size, n_feats, mel_timesteps) """ z = torch.randn_like(mu) * temperature t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype) if self.t_scheduler == "cosine": t_span = 1 - torch.cos(t_span * 0.5 * torch.pi) return self.solve_euler( z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond ) @torch.inference_mode() def capture_inference(self, seq_len_to_capture=list(range(128, 512, 8))): start_time = time.time() print( f"capture_inference for ConditionalCFM solve euler, seq_len_to_capture: {seq_len_to_capture}" ) for seq_len in seq_len_to_capture: static_z = torch.randn( 1, 80, seq_len, device=torch.device("cuda"), dtype=torch.bfloat16 ) static_t_span = torch.linspace( 0, 1, 11, device=torch.device("cuda"), dtype=torch.bfloat16 ) # only capture at 10 steps static_mu = torch.randn( 1, 80, seq_len, device=torch.device("cuda"), dtype=torch.bfloat16 ) static_mask = torch.ones( 1, 1, seq_len, device=torch.device("cuda"), dtype=torch.bfloat16 ) static_spks = torch.randn( 1, 80, device=torch.device("cuda"), dtype=torch.bfloat16 ) static_cond = torch.randn( 1, 80, seq_len, device=torch.device("cuda"), dtype=torch.float32 ) static_out = torch.randn( 1, 80, seq_len, device=torch.device("cuda"), dtype=torch.bfloat16 ) self._solve_euler_impl( static_z, t_span=static_t_span, mu=static_mu, mask=static_mask, spks=static_spks, cond=static_cond, ) torch.cuda.synchronize() g = torch.cuda.CUDAGraph() with torch.cuda.graph(g): static_out = self._solve_euler_impl( static_z, t_span=static_t_span, mu=static_mu, mask=static_mask, spks=static_spks, cond=static_cond, ) self.inference_buffers[seq_len] = { "z": static_z, "t_span": static_t_span, "mu": static_mu, "mask": static_mask, "spks": static_spks, "cond": static_cond, "out": static_out, } self.inference_graphs[seq_len] = g end_time = time.time() print( f"capture_inference for ConditionalCFM solve euler, time elapsed: {end_time - start_time}" ) def solve_euler(self, x, t_span, mu, mask, spks, cond): if hasattr(self, "inference_graphs") and len(self.inference_graphs) > 0: curr_seq_len = x.shape[2] available_lengths = sorted(list(self.inference_graphs.keys())) if curr_seq_len <= max(available_lengths): target_len = min(available_lengths, key=lambda x: abs(x - curr_seq_len)) if target_len == curr_seq_len: padded_x = x padded_mu = mu padded_mask = mask if cond is not None: padded_cond = cond else: padded_x = torch.randn( (x.shape[0], x.shape[1], target_len), dtype=x.dtype, device=x.device, ) padded_x[:, :, :curr_seq_len] = x padded_mu = torch.randn( (mu.shape[0], mu.shape[1], target_len), dtype=mu.dtype, device=mu.device, ) padded_mu[:, :, :curr_seq_len] = mu # FIXME(ys): uses zeros and maskgroupnorm padded_mask = torch.ones( (mask.shape[0], mask.shape[1], target_len), dtype=mask.dtype, device=mask.device, ) if cond is not None: padded_cond = torch.randn( (cond.shape[0], cond.shape[1], target_len), dtype=cond.dtype, device=cond.device, ) padded_cond[:, :, :curr_seq_len] = cond buffer = self.inference_buffers[target_len] buffer["z"].copy_(padded_x) buffer["t_span"].copy_(t_span) buffer["mu"].copy_(padded_mu) buffer["mask"].copy_(padded_mask) buffer["spks"].copy_(spks) if cond is not None: buffer["cond"].copy_(padded_cond) self.inference_graphs[target_len].replay() output = buffer["out"][:, :, :curr_seq_len] return output return self._solve_euler_impl(x, t_span, mu, mask, spks, cond) def _solve_euler_impl(self, x, t_span, mu, mask, spks, cond): """ Fixed euler solver for ODEs. Args: x (torch.Tensor): random noise t_span (torch.Tensor): n_timesteps interpolated shape: (n_timesteps + 1,) mu (torch.Tensor): output of encoder shape: (batch_size, n_feats, mel_timesteps) mask (torch.Tensor): output_mask shape: (batch_size, 1, mel_timesteps) spks (torch.Tensor, optional): speaker ids. Defaults to None. shape: (batch_size, spk_emb_dim) cond: Not used but kept for future purposes """ t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0] t = t.unsqueeze(dim=0) # I am storing this because I can later plot it by putting a debugger here and saving it to a file # Or in future might add like a return_all_steps flag sol = [] for step in range(1, len(t_span)): if self.inference_cfg_rate > 0: x_double = torch.cat([x, x], dim=0) mask_double = torch.cat([mask, mask], dim=0) mu_double = torch.cat([mu, torch.zeros_like(mu)], dim=0) t_double = torch.cat([t, t], dim=0) spks_double = ( torch.cat([spks, torch.zeros_like(spks)], dim=0) if spks is not None else None ) cond_double = torch.cat([cond, torch.zeros_like(cond)], dim=0) dphi_dt_double = self.forward_estimator( x_double, mask_double, mu_double, t_double, spks_double, cond_double ) dphi_dt, cfg_dphi_dt = torch.chunk(dphi_dt_double, 2, dim=0) dphi_dt = ( 1.0 + self.inference_cfg_rate ) * dphi_dt - self.inference_cfg_rate * cfg_dphi_dt else: dphi_dt = self.forward_estimator(x, mask, mu, t, spks, cond) x = x + dt * dphi_dt t = t + dt sol.append(x) if step < len(t_span) - 1: dt = t_span[step + 1] - t return sol[-1] def forward_estimator(self, x, mask, mu, t, spks, cond): if isinstance(self.estimator, torch.nn.Module): return self.estimator.forward(x, mask, mu, t, spks, cond) else: ort_inputs = { "x": x.cpu().numpy(), "mask": mask.cpu().numpy(), "mu": mu.cpu().numpy(), "t": t.cpu().numpy(), "spks": spks.cpu().numpy(), "cond": cond.cpu().numpy(), } output = self.estimator.run(None, ort_inputs)[0] return torch.tensor(output, dtype=x.dtype, device=x.device) def compute_loss(self, x1, mask, mu, spks=None, cond=None): """Computes diffusion loss Args: x1 (torch.Tensor): Target shape: (batch_size, n_feats, mel_timesteps) mask (torch.Tensor): target mask shape: (batch_size, 1, mel_timesteps) mu (torch.Tensor): output of encoder shape: (batch_size, n_feats, mel_timesteps) spks (torch.Tensor, optional): speaker embedding. Defaults to None. shape: (batch_size, spk_emb_dim) Returns: loss: conditional flow matching loss y: conditional flow shape: (batch_size, n_feats, mel_timesteps) """ b, _, t = mu.shape # random timestep t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype) if self.t_scheduler == "cosine": t = 1 - torch.cos(t * 0.5 * torch.pi) # sample noise p(x_0) z = torch.randn_like(x1) y = (1 - (1 - self.sigma_min) * t) * z + t * x1 u = x1 - (1 - self.sigma_min) * z # during training, we randomly drop condition to trade off mode coverage and sample fidelity if self.training_cfg_rate > 0: cfg_mask = torch.rand(b, device=x1.device) > self.training_cfg_rate mu = mu * cfg_mask.view(-1, 1, 1) spks = spks * cfg_mask.view(-1, 1) cond = cond * cfg_mask.view(-1, 1, 1) pred = self.estimator(y, mask, mu, t.squeeze(), spks, cond) loss = F.mse_loss(pred * mask, u * mask, reduction="sum") / ( torch.sum(mask) * u.shape[1] ) return loss, y