# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import random from typing import Dict, Optional import torch import torch.nn as nn from torch.nn import functional as F from omegaconf import DictConfig from cosyvoice.utils.mask import make_pad_mask import time class MaskedDiffWithXvec(torch.nn.Module): def __init__( self, input_size: int = 512, output_size: int = 80, spk_embed_dim: int = 192, output_type: str = "mel", vocab_size: int = 4096, input_frame_rate: int = 50, only_mask_loss: bool = True, encoder: torch.nn.Module = None, length_regulator: torch.nn.Module = None, decoder: torch.nn.Module = None, decoder_conf: Dict = { "in_channels": 240, "out_channel": 80, "spk_emb_dim": 80, "n_spks": 1, "cfm_params": DictConfig( { "sigma_min": 1e-06, "solver": "euler", "t_scheduler": "cosine", "training_cfg_rate": 0.2, "inference_cfg_rate": 0.7, "reg_loss_type": "l1", } ), "decoder_params": { "channels": [256, 256], "dropout": 0.0, "attention_head_dim": 64, "n_blocks": 4, "num_mid_blocks": 12, "num_heads": 8, "act_fn": "gelu", }, }, mel_feat_conf: Dict = { "n_fft": 1024, "num_mels": 80, "sampling_rate": 22050, "hop_size": 256, "win_size": 1024, "fmin": 0, "fmax": 8000, }, ): super().__init__() self.input_size = input_size self.output_size = output_size self.decoder_conf = decoder_conf self.mel_feat_conf = mel_feat_conf self.vocab_size = vocab_size self.output_type = output_type self.input_frame_rate = input_frame_rate logging.info(f"input frame rate={self.input_frame_rate}") self.input_embedding = nn.Embedding(vocab_size, input_size) self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size) self.encoder = encoder self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), output_size) self.decoder = decoder self.length_regulator = length_regulator self.only_mask_loss = only_mask_loss def forward( self, batch: dict, device: torch.device, ) -> Dict[str, Optional[torch.Tensor]]: token = batch["speech_token"].to(device) token_len = batch["speech_token_len"].to(device) feat = batch["speech_feat"].to(device) feat_len = batch["speech_feat_len"].to(device) embedding = batch["embedding"].to(device) # xvec projection embedding = F.normalize(embedding, dim=1) embedding = self.spk_embed_affine_layer(embedding) # concat text and prompt_text mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(device) token = self.input_embedding(torch.clamp(token, min=0)) * mask # text encode h, h_lengths = self.encoder(token, token_len) h = self.encoder_proj(h) h, h_lengths = self.length_regulator(h, feat_len) # get conditions conds = torch.zeros(feat.shape, device=token.device) for i, j in enumerate(feat_len): if random.random() < 0.5: continue index = random.randint(0, int(0.3 * j)) conds[i, :index] = feat[i, :index] conds = conds.transpose(1, 2) mask = (~make_pad_mask(feat_len)).to(h) feat = F.interpolate( feat.unsqueeze(dim=1), size=h.shape[1:], mode="nearest" ).squeeze(dim=1) loss, _ = self.decoder.compute_loss( feat.transpose(1, 2).contiguous(), mask.unsqueeze(1), h.transpose(1, 2).contiguous(), embedding, cond=conds, ) return {"loss": loss} @torch.inference_mode() def inference( self, token, token_len, prompt_token, prompt_token_len, prompt_feat, prompt_feat_len, embedding, ): assert token.shape[0] == 1 # xvec projection embedding = F.normalize(embedding, dim=1) embedding = self.spk_embed_affine_layer(embedding) # concat text and prompt_text token_len1, token_len2 = prompt_token.shape[1], token.shape[1] # text encode token, token_len = ( torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len, ) token = self.input_embedding(torch.clamp(token, min=0)) h, _ = self.encoder.inference(token, token_len) h = self.encoder_proj(h) mel_len1, mel_len2 = prompt_feat.shape[1], int( token_len2 / self.input_frame_rate * self.mel_feat_conf["sampling_rate"] / self.mel_feat_conf["hop_size"] ) h, _ = self.length_regulator.inference( h[:, :token_len1], h[:, token_len1:], mel_len1, mel_len2, ) # get conditions conds = torch.zeros( [1, mel_len1 + mel_len2, self.output_size], device=token.device ) conds[:, :mel_len1] = prompt_feat conds = conds.transpose(1, 2) # mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h) mask = torch.ones( [1, mel_len1 + mel_len2], device=h.device, dtype=torch.bfloat16 ) feat = self.decoder( mu=h.transpose(1, 2).contiguous(), mask=mask.unsqueeze(1), spks=embedding, cond=conds, n_timesteps=10, ) feat = feat[:, :, mel_len1:] assert feat.shape[2] == mel_len2 return feat