Spaces:
Runtime error
Runtime error
File size: 16,122 Bytes
0102e16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import torch
from funasr_detach.register import tables
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask
class mae_loss(torch.nn.Module):
def __init__(self, normalize_length=False):
super(mae_loss, self).__init__()
self.normalize_length = normalize_length
self.criterion = torch.nn.L1Loss(reduction="sum")
def forward(self, token_length, pre_token_length):
loss_token_normalizer = token_length.size(0)
if self.normalize_length:
loss_token_normalizer = token_length.sum().type(torch.float32)
loss = self.criterion(token_length, pre_token_length)
loss = loss / loss_token_normalizer
return loss
def cif(hidden, alphas, threshold):
batch_size, len_time, hidden_size = hidden.size()
# loop varss
integrate = torch.zeros([batch_size], device=hidden.device)
frame = torch.zeros([batch_size, hidden_size], device=hidden.device)
# intermediate vars along time
list_fires = []
list_frames = []
for t in range(len_time):
alpha = alphas[:, t]
distribution_completion = (
torch.ones([batch_size], device=hidden.device) - integrate
)
integrate += alpha
list_fires.append(integrate)
fire_place = integrate >= threshold
integrate = torch.where(
fire_place,
integrate - torch.ones([batch_size], device=hidden.device),
integrate,
)
cur = torch.where(fire_place, distribution_completion, alpha)
remainds = alpha - cur
frame += cur[:, None] * hidden[:, t, :]
list_frames.append(frame)
frame = torch.where(
fire_place[:, None].repeat(1, hidden_size),
remainds[:, None] * hidden[:, t, :],
frame,
)
fires = torch.stack(list_fires, 1)
frames = torch.stack(list_frames, 1)
list_ls = []
len_labels = torch.round(alphas.sum(-1)).int()
max_label_len = len_labels.max()
for b in range(batch_size):
fire = fires[b, :]
l = torch.index_select(
frames[b, :, :], 0, torch.nonzero(fire >= threshold).squeeze()
)
pad_l = torch.zeros(
[max_label_len - l.size(0), hidden_size], device=hidden.device
)
list_ls.append(torch.cat([l, pad_l], 0))
return torch.stack(list_ls, 0), fires
def cif_wo_hidden(alphas, threshold):
batch_size, len_time = alphas.size()
# loop varss
integrate = torch.zeros([batch_size], device=alphas.device)
# intermediate vars along time
list_fires = []
for t in range(len_time):
alpha = alphas[:, t]
integrate += alpha
list_fires.append(integrate)
fire_place = integrate >= threshold
integrate = torch.where(
fire_place,
integrate - torch.ones([batch_size], device=alphas.device) * threshold,
integrate,
)
fires = torch.stack(list_fires, 1)
return fires
@tables.register("predictor_classes", "CifPredictorV3")
class CifPredictorV3(torch.nn.Module):
def __init__(
self,
idim,
l_order,
r_order,
threshold=1.0,
dropout=0.1,
smooth_factor=1.0,
noise_threshold=0,
tail_threshold=0.0,
tf2torch_tensor_name_prefix_torch="predictor",
tf2torch_tensor_name_prefix_tf="seq2seq/cif",
smooth_factor2=1.0,
noise_threshold2=0,
upsample_times=5,
upsample_type="cnn",
use_cif1_cnn=True,
tail_mask=True,
):
super(CifPredictorV3, self).__init__()
self.pad = torch.nn.ConstantPad1d((l_order, r_order), 0)
self.cif_conv1d = torch.nn.Conv1d(idim, idim, l_order + r_order + 1)
self.cif_output = torch.nn.Linear(idim, 1)
self.dropout = torch.nn.Dropout(p=dropout)
self.threshold = threshold
self.smooth_factor = smooth_factor
self.noise_threshold = noise_threshold
self.tail_threshold = tail_threshold
self.tf2torch_tensor_name_prefix_torch = tf2torch_tensor_name_prefix_torch
self.tf2torch_tensor_name_prefix_tf = tf2torch_tensor_name_prefix_tf
self.upsample_times = upsample_times
self.upsample_type = upsample_type
self.use_cif1_cnn = use_cif1_cnn
if self.upsample_type == "cnn":
self.upsample_cnn = torch.nn.ConvTranspose1d(
idim, idim, self.upsample_times, self.upsample_times
)
self.cif_output2 = torch.nn.Linear(idim, 1)
elif self.upsample_type == "cnn_blstm":
self.upsample_cnn = torch.nn.ConvTranspose1d(
idim, idim, self.upsample_times, self.upsample_times
)
self.blstm = torch.nn.LSTM(
idim,
idim,
1,
bias=True,
batch_first=True,
dropout=0.0,
bidirectional=True,
)
self.cif_output2 = torch.nn.Linear(idim * 2, 1)
elif self.upsample_type == "cnn_attn":
self.upsample_cnn = torch.nn.ConvTranspose1d(
idim, idim, self.upsample_times, self.upsample_times
)
from funasr_detach.models.transformer.encoder import (
EncoderLayer as TransformerEncoderLayer,
)
from funasr_detach.models.transformer.attention import MultiHeadedAttention
from funasr_detach.models.transformer.positionwise_feed_forward import (
PositionwiseFeedForward,
)
positionwise_layer_args = (
idim,
idim * 2,
0.1,
)
self.self_attn = TransformerEncoderLayer(
idim,
MultiHeadedAttention(4, idim, 0.1),
PositionwiseFeedForward(*positionwise_layer_args),
0.1,
True, # normalize_before,
False, # concat_after,
)
self.cif_output2 = torch.nn.Linear(idim, 1)
self.smooth_factor2 = smooth_factor2
self.noise_threshold2 = noise_threshold2
def forward(
self,
hidden,
target_label=None,
mask=None,
ignore_id=-1,
mask_chunk_predictor=None,
target_label_length=None,
):
h = hidden
context = h.transpose(1, 2)
queries = self.pad(context)
output = torch.relu(self.cif_conv1d(queries))
# alphas2 is an extra head for timestamp prediction
if not self.use_cif1_cnn:
_output = context
else:
_output = output
if self.upsample_type == "cnn":
output2 = self.upsample_cnn(_output)
output2 = output2.transpose(1, 2)
elif self.upsample_type == "cnn_blstm":
output2 = self.upsample_cnn(_output)
output2 = output2.transpose(1, 2)
output2, (_, _) = self.blstm(output2)
elif self.upsample_type == "cnn_attn":
output2 = self.upsample_cnn(_output)
output2 = output2.transpose(1, 2)
output2, _ = self.self_attn(output2, mask)
# import pdb; pdb.set_trace()
alphas2 = torch.sigmoid(self.cif_output2(output2))
alphas2 = torch.nn.functional.relu(
alphas2 * self.smooth_factor2 - self.noise_threshold2
)
# repeat the mask in T demension to match the upsampled length
if mask is not None:
mask2 = (
mask.repeat(1, self.upsample_times, 1)
.transpose(-1, -2)
.reshape(alphas2.shape[0], -1)
)
mask2 = mask2.unsqueeze(-1)
alphas2 = alphas2 * mask2
alphas2 = alphas2.squeeze(-1)
token_num2 = alphas2.sum(-1)
output = output.transpose(1, 2)
output = self.cif_output(output)
alphas = torch.sigmoid(output)
alphas = torch.nn.functional.relu(
alphas * self.smooth_factor - self.noise_threshold
)
if mask is not None:
mask = mask.transpose(-1, -2).float()
alphas = alphas * mask
if mask_chunk_predictor is not None:
alphas = alphas * mask_chunk_predictor
alphas = alphas.squeeze(-1)
mask = mask.squeeze(-1)
if target_label_length is not None:
target_length = target_label_length
elif target_label is not None:
target_length = (target_label != ignore_id).float().sum(-1)
else:
target_length = None
token_num = alphas.sum(-1)
if target_length is not None:
alphas *= (target_length / token_num)[:, None].repeat(1, alphas.size(1))
elif self.tail_threshold > 0.0:
hidden, alphas, token_num = self.tail_process_fn(
hidden, alphas, token_num, mask=mask
)
acoustic_embeds, cif_peak = cif(hidden, alphas, self.threshold)
if target_length is None and self.tail_threshold > 0.0:
token_num_int = torch.max(token_num).type(torch.int32).item()
acoustic_embeds = acoustic_embeds[:, :token_num_int, :]
return acoustic_embeds, token_num, alphas, cif_peak, token_num2
def get_upsample_timestamp(self, hidden, mask=None, token_num=None):
h = hidden
b = hidden.shape[0]
context = h.transpose(1, 2)
queries = self.pad(context)
output = torch.relu(self.cif_conv1d(queries))
# alphas2 is an extra head for timestamp prediction
if not self.use_cif1_cnn:
_output = context
else:
_output = output
if self.upsample_type == "cnn":
output2 = self.upsample_cnn(_output)
output2 = output2.transpose(1, 2)
elif self.upsample_type == "cnn_blstm":
output2 = self.upsample_cnn(_output)
output2 = output2.transpose(1, 2)
output2, (_, _) = self.blstm(output2)
elif self.upsample_type == "cnn_attn":
output2 = self.upsample_cnn(_output)
output2 = output2.transpose(1, 2)
output2, _ = self.self_attn(output2, mask)
alphas2 = torch.sigmoid(self.cif_output2(output2))
alphas2 = torch.nn.functional.relu(
alphas2 * self.smooth_factor2 - self.noise_threshold2
)
# repeat the mask in T demension to match the upsampled length
if mask is not None:
mask2 = (
mask.repeat(1, self.upsample_times, 1)
.transpose(-1, -2)
.reshape(alphas2.shape[0], -1)
)
mask2 = mask2.unsqueeze(-1)
alphas2 = alphas2 * mask2
alphas2 = alphas2.squeeze(-1)
_token_num = alphas2.sum(-1)
if token_num is not None:
alphas2 *= (token_num / _token_num)[:, None].repeat(1, alphas2.size(1))
# re-downsample
ds_alphas = alphas2.reshape(b, -1, self.upsample_times).sum(-1)
ds_cif_peak = cif_wo_hidden(ds_alphas, self.threshold - 1e-4)
# upsampled alphas and cif_peak
us_alphas = alphas2
us_cif_peak = cif_wo_hidden(us_alphas, self.threshold - 1e-4)
return ds_alphas, ds_cif_peak, us_alphas, us_cif_peak
def tail_process_fn(self, hidden, alphas, token_num=None, mask=None):
b, t, d = hidden.size()
tail_threshold = self.tail_threshold
if mask is not None:
zeros_t = torch.zeros((b, 1), dtype=torch.float32, device=alphas.device)
ones_t = torch.ones_like(zeros_t)
mask_1 = torch.cat([mask, zeros_t], dim=1)
mask_2 = torch.cat([ones_t, mask], dim=1)
mask = mask_2 - mask_1
tail_threshold = mask * tail_threshold
alphas = torch.cat([alphas, zeros_t], dim=1)
alphas = torch.add(alphas, tail_threshold)
else:
tail_threshold = torch.tensor([tail_threshold], dtype=alphas.dtype).to(
alphas.device
)
tail_threshold = torch.reshape(tail_threshold, (1, 1))
alphas = torch.cat([alphas, tail_threshold], dim=1)
zeros = torch.zeros((b, 1, d), dtype=hidden.dtype).to(hidden.device)
hidden = torch.cat([hidden, zeros], dim=1)
token_num = alphas.sum(dim=-1)
token_num_floor = torch.floor(token_num)
return hidden, alphas, token_num_floor
def gen_frame_alignments(
self, alphas: torch.Tensor = None, encoder_sequence_length: torch.Tensor = None
):
batch_size, maximum_length = alphas.size()
int_type = torch.int32
is_training = self.training
if is_training:
token_num = torch.round(torch.sum(alphas, dim=1)).type(int_type)
else:
token_num = torch.floor(torch.sum(alphas, dim=1)).type(int_type)
max_token_num = torch.max(token_num).item()
alphas_cumsum = torch.cumsum(alphas, dim=1)
alphas_cumsum = torch.floor(alphas_cumsum).type(int_type)
alphas_cumsum = alphas_cumsum[:, None, :].repeat(1, max_token_num, 1)
index = torch.ones([batch_size, max_token_num], dtype=int_type)
index = torch.cumsum(index, dim=1)
index = index[:, :, None].repeat(1, 1, maximum_length).to(alphas_cumsum.device)
index_div = torch.floor(torch.true_divide(alphas_cumsum, index)).type(int_type)
index_div_bool_zeros = index_div.eq(0)
index_div_bool_zeros_count = torch.sum(index_div_bool_zeros, dim=-1) + 1
index_div_bool_zeros_count = torch.clamp(
index_div_bool_zeros_count, 0, encoder_sequence_length.max()
)
token_num_mask = (~make_pad_mask(token_num, maxlen=max_token_num)).to(
token_num.device
)
index_div_bool_zeros_count *= token_num_mask
index_div_bool_zeros_count_tile = index_div_bool_zeros_count[:, :, None].repeat(
1, 1, maximum_length
)
ones = torch.ones_like(index_div_bool_zeros_count_tile)
zeros = torch.zeros_like(index_div_bool_zeros_count_tile)
ones = torch.cumsum(ones, dim=2)
cond = index_div_bool_zeros_count_tile == ones
index_div_bool_zeros_count_tile = torch.where(cond, zeros, ones)
index_div_bool_zeros_count_tile_bool = index_div_bool_zeros_count_tile.type(
torch.bool
)
index_div_bool_zeros_count_tile = 1 - index_div_bool_zeros_count_tile_bool.type(
int_type
)
index_div_bool_zeros_count_tile_out = torch.sum(
index_div_bool_zeros_count_tile, dim=1
)
index_div_bool_zeros_count_tile_out = index_div_bool_zeros_count_tile_out.type(
int_type
)
predictor_mask = (
(
~make_pad_mask(
encoder_sequence_length, maxlen=encoder_sequence_length.max()
)
)
.type(int_type)
.to(encoder_sequence_length.device)
)
index_div_bool_zeros_count_tile_out = (
index_div_bool_zeros_count_tile_out * predictor_mask
)
predictor_alignments = index_div_bool_zeros_count_tile_out
predictor_alignments_length = predictor_alignments.sum(-1).type(
encoder_sequence_length.dtype
)
return predictor_alignments.detach(), predictor_alignments_length.detach()
|